Min-Max Statistical Alignment for Transfer Learning

被引:4
|
作者
Herath, Samitha [1 ,4 ]
Harandi, Mehrtash [2 ,4 ]
Fernando, Basura [1 ,5 ]
Nock, Richard [1 ,3 ,4 ]
机构
[1] Australian Natl Univ, Canberra, ACT, Australia
[2] Monash Univ, Clayton, Vic, Australia
[3] Univ Sydney, Sydney, NSW, Australia
[4] CSIRO, DATA61, Canberra, ACT, Australia
[5] ASTAR, Human Ctr AI Programme, Singapore, Singapore
关键词
D O I
10.1109/CVPR.2019.00951
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
A profound idea in learning invariant features for transfer learning is to align statistical properties of the domains. In practice, this is achieved by minimizing the disparity between the domains, usually measured in terms of their statistical properties. We question the capability of this school of thought and propose to minimize the maximum disparity between domains. Furthermore, we develop an end-to end learning scheme that enables us to benefit from the proposed min-max strategy in training deep models. We show that the min-max solution can outperform the existing statistical alignment solutions, and can compete with state-of-the-art solutions on two challenging learning tasks, namely, Unsupervised Domain Adaptation (UDA) and Zero-Shot Learning (ZSL).
引用
收藏
页码:9280 / 9289
页数:10
相关论文
共 50 条
  • [41] AN EXTENSION OF MIN-MAX THEOREM
    PONSTEIN, J
    SIAM REVIEW, 1965, 7 (02) : 181 - &
  • [42] On Min-Max Pair in Tournaments
    Lu, Xiaoyun
    GRAPHS AND COMBINATORICS, 2018, 34 (04) : 613 - 618
  • [43] MIN-MAX FOR MULTIPLE CRITERIA
    DRAGUSIN, C
    RAIRO-RECHERCHE OPERATIONNELLE-OPERATIONS RESEARCH, 1978, 12 (02): : 169 - 180
  • [44] Dynamic Min-Max Problems
    Uwe Schwiegelshohn
    Lothar Thiele
    Discrete Event Dynamic Systems, 1999, 9 : 111 - 134
  • [45] Integration of learning algorithm on fuzzy min-max neural networks
    Hu J.
    Luo Y.
    Journal of Shanghai Jiaotong University (Science), 2017, 22 (6) : 733 - 741
  • [46] Agglomerative learning for general fuzzy min-max neural network
    Gabrys, B
    NEURAL NETWORKS FOR SIGNAL PROCESSING X, VOLS 1 AND 2, PROCEEDINGS, 2000, : 692 - 701
  • [47] Agglomerative learning for general fuzzy min-max neural network
    Univ of Paisley, Paisley, United Kingdom
    Neural Networks for Signal Processing - Proceedings of the IEEE Workshop, 2000, 2 : 692 - 701
  • [48] Integration of Learning Algorithm on Fuzzy Min-Max Neural Networks
    胡静
    罗宜元
    Journal of Shanghai Jiaotong University(Science), 2017, 22 (06) : 733 - 741
  • [49] Local Approximability of Max-Min and Min-Max Linear Programs
    Patrik Floréen
    Marja Hassinen
    Joel Kaasinen
    Petteri Kaski
    Topi Musto
    Jukka Suomela
    Theory of Computing Systems, 2011, 49 : 672 - 697
  • [50] Local Approximability of Max-Min and Min-Max Linear Programs
    Floreen, Patrik
    Hassinen, Marja
    Kaasinen, Joel
    Kaski, Petteri
    Musto, Topi
    Suomela, Jukka
    THEORY OF COMPUTING SYSTEMS, 2011, 49 (04) : 672 - 697