Topological criterium for characterizing some spaces

被引:0
|
作者
Casevitz, P [1 ]
机构
[1] Univ Paris 06, Equipe Anal, F-75252 Paris 05, France
关键词
D O I
10.1016/S0764-4442(00)80049-X
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Here we give a characterization for topological properties of subspaces of the product space R-N of sequences of reals. For analytic ideals, i.e. analytic vector subspaces X subset of or equal to R-N which verify: [x is an element of X and For All n, \y(n)\ less than or equal to \x(n)\] double right arrow y is an element of X, we have the following dichotomy: X admits a polish vector space topology stronger than the product topology of R-N or one can embed into X in a strong sense the space of finite sequences c(00) or the space l(infinity). If X admits such a Polish topology we find special functions which define this topology and have a simple form; we name them "evaluations functions" and with this notion we specify the descriptive complexity of X and we give some properties of ideals which only admit a complete metrizable topology. (C) 1999 Academie des Sciences/Editions scientifiques et medicales Elsevier SAS.
引用
收藏
页码:499 / 502
页数:4
相关论文
共 50 条
  • [31] SOME QUESTIONS OF TOPOLOGICAL VECTOR SPACES
    ROBERT, A
    COMMENTARII MATHEMATICI HELVETICI, 1967, 42 (04) : 314 - &
  • [32] SOME SUBSETS OF IDEAL TOPOLOGICAL SPACES
    Jeyanthi, V.
    Devi, V. Renuka
    Sivaraj, D.
    MATEMATICKI VESNIK, 2007, 59 (03): : 75 - 84
  • [33] CHARACTERIZATIONS OF SOME SPACES WITH MAPS TO ORDERED TOPOLOGICAL VECTOR SPACES
    Yang, Er-Guang
    HOUSTON JOURNAL OF MATHEMATICS, 2017, 43 (02): : 679 - 689
  • [34] Some homotopy properties of spaces of finite subsets of topological spaces
    Handel, D
    HOUSTON JOURNAL OF MATHEMATICS, 2000, 26 (04): : 747 - 764
  • [35] Some Generalization of Neighbourhoods in Nano Topological Spaces
    Chitrakala, K.
    Vadivel, A.
    Saravanakumar, G.
    RECENT TRENDS IN PURE AND APPLIED MATHEMATICS, 2019, 2177
  • [36] Some New Topologies on Ideal Topological Spaces
    Shyamapada Modak
    Proceedings of the National Academy of Sciences, India Section A: Physical Sciences, 2012, 82 : 233 - 243
  • [37] SOME CLASSES OF TOPOLOGICAL SPACES AND THEIR BICOMPACT EXTENSIONS
    ZAITSEV, V
    DOKLADY AKADEMII NAUK SSSR, 1968, 178 (04): : 778 - &
  • [38] SOME REMARKS ON CLOSURE OPERATOR IN TOPOLOGICAL SPACES
    LEVINE, N
    AMERICAN MATHEMATICAL MONTHLY, 1963, 70 (05): : 553 - &
  • [39] Some Variants of Normality in Relative Topological Spaces
    Raina, Sehar Shakeel
    Das, A. K.
    FILOMAT, 2022, 36 (12) : 4241 - 4249
  • [40] Notes on remainders of topological spaces in some compactifications
    Wang, Hanfeng
    He, Wei
    TOPOLOGY AND ITS APPLICATIONS, 2016, 208 : 55 - 63