Extracellular electron uptake by autotrophic microbes: physiological, ecological, and evolutionary implications

被引:34
|
作者
Gupta, Dinesh [1 ]
Guzman, Michael S. [2 ]
Bose, Arpita [1 ]
机构
[1] Washington Univ St Louis, Dept Biol, One Brookings Dr, St Louis, MO 63130 USA
[2] Lawrence Livermore Natl Lab, Biosci & Biotechnol Div, Phys & Life Sci Directorate, Livermore, CA 94550 USA
基金
美国国家科学基金会;
关键词
Extracellular electron uptake (EEU); Chemoautotrophy; Photoautotrophy; Photoferrotrophy; Biogeochemical cycle; SULFATE-REDUCING BACTERIA; FERROUS IRON OXIDATION; PHOTOTROPHIC FE(II) OXIDATION; CARBON ASSIMILATION PATHWAYS; METHANOTROPHIC ARCHAEA; ANAEROBIC OXIDATION; ACIDITHIOBACILLUS-FERROOXIDANS; THIOBACILLUS-FERROOXIDANS; ACETOGENIC BACTERIA; OXIDIZING BACTERIUM;
D O I
10.1007/s10295-020-02309-0
中图分类号
Q81 [生物工程学(生物技术)]; Q93 [微生物学];
学科分类号
071005 ; 0836 ; 090102 ; 100705 ;
摘要
Microbes exchange electrons with their extracellular environment via direct or indirect means. This exchange is bidirectional and supports essential microbial oxidation-reduction processes, such as respiration and photosynthesis. The microbial capacity to use electrons from insoluble electron donors, such as redox-active minerals, poised electrodes, or even other microbial cells is called extracellular electron uptake (EEU). Autotrophs with this capability can thrive in nutrient and soluble electron donor-deficient environments. As primary producers, autotrophic microbes capable of EEU greatly impact microbial ecology and play important roles in matter and energy flow in the biosphere. In this review, we discuss EEU-driven autotrophic metabolisms, their mechanism and physiology, and highlight their ecological, evolutionary, and biotechnological implications.
引用
收藏
页码:863 / 876
页数:14
相关论文
共 50 条
  • [21] ENTOMOLOGICAL, ECOLOGICAL, AND EVOLUTIONARY IMPLICATIONS OF PHOTODYNAMIC ACTION
    GRAHAM, K
    CANADIAN JOURNAL OF ZOOLOGY-REVUE CANADIENNE DE ZOOLOGIE, 1972, 50 (12): : 1631 - 1636
  • [22] Ecological and evolutionary implications of dinosaur feeding behaviour
    Barrett, PM
    Rayfield, EJ
    TRENDS IN ECOLOGY & EVOLUTION, 2006, 21 (04) : 217 - 224
  • [23] EXTRACELLULAR POLYSACCHARIDE FORMED BY PSEUDOMONAS-HYDROGENOVORA IN AUTOTROPHIC CULTURE AND ITS PHYSIOLOGICAL ACTIVITIES
    NGUYEN, BT
    KODAMA, T
    MINODA, Y
    AGRICULTURAL AND BIOLOGICAL CHEMISTRY, 1980, 44 (12): : 2925 - 2930
  • [24] Accidental epiphytes: Ecological insights and evolutionary implications
    Hoeber, Vincent
    Zotz, Gerhard
    ECOLOGICAL MONOGRAPHS, 2022, 92 (04)
  • [25] Physiological implications of NTBI uptake by T lymphocytes
    Pinto, Jorge P.
    Arezes, Joao
    Dias, Vera
    Oliveira, Susana
    Viera, Ines
    Costa, Monica
    Vos, Matthijn
    Carlsson, Anna
    Rikers, Yuri
    Rangel, Maria
    Porto, Graca
    FRONTIERS IN PHARMACOLOGY, 2014, 5
  • [26] Harnessing the Power of Defensive Microbes: Evolutionary Implications in Nature and Disease Control
    Ford, Suzanne A.
    King, Kayla C.
    PLOS PATHOGENS, 2016, 12 (04)
  • [27] Photoferrotrophs Produce a PioAB Electron Conduit for Extracellular Electron Uptake
    Gupta, Dinesh
    Sutherland, Molly C.
    Rengasamy, Karthikeyan
    Meacham, J. Mark
    Kranz, Robert G.
    Bose, Arpita
    MBIO, 2019, 10 (06):
  • [28] Extracellular Electron Uptake by Two Methanosarcina Species
    Yee, Mon Oo
    Snoeyenbos-West, Oona L.
    Thamdrup, Bo
    Ottosen, Lars D. M.
    Rotaru, Amelia-Elena
    FRONTIERS IN ENERGY RESEARCH, 2019, 7 (APR)
  • [29] ECOLOGICAL, EVOLUTIONARY, AND PHYSIOLOGICAL PERSPECTIVES ON OCEAN ACIDIFICATION AND MOLLUSCAN SHELLFISH
    Wikfors, Gary H.
    JOURNAL OF SHELLFISH RESEARCH, 2011, 30 (02): : 563 - 563
  • [30] Integrating physiological, ecological and evolutionary change: a Price equation approach
    Collins, Sinead
    Gardner, Andy
    ECOLOGY LETTERS, 2009, 12 (08) : 744 - 757