Extracellular electron uptake by autotrophic microbes: physiological, ecological, and evolutionary implications

被引:34
|
作者
Gupta, Dinesh [1 ]
Guzman, Michael S. [2 ]
Bose, Arpita [1 ]
机构
[1] Washington Univ St Louis, Dept Biol, One Brookings Dr, St Louis, MO 63130 USA
[2] Lawrence Livermore Natl Lab, Biosci & Biotechnol Div, Phys & Life Sci Directorate, Livermore, CA 94550 USA
基金
美国国家科学基金会;
关键词
Extracellular electron uptake (EEU); Chemoautotrophy; Photoautotrophy; Photoferrotrophy; Biogeochemical cycle; SULFATE-REDUCING BACTERIA; FERROUS IRON OXIDATION; PHOTOTROPHIC FE(II) OXIDATION; CARBON ASSIMILATION PATHWAYS; METHANOTROPHIC ARCHAEA; ANAEROBIC OXIDATION; ACIDITHIOBACILLUS-FERROOXIDANS; THIOBACILLUS-FERROOXIDANS; ACETOGENIC BACTERIA; OXIDIZING BACTERIUM;
D O I
10.1007/s10295-020-02309-0
中图分类号
Q81 [生物工程学(生物技术)]; Q93 [微生物学];
学科分类号
071005 ; 0836 ; 090102 ; 100705 ;
摘要
Microbes exchange electrons with their extracellular environment via direct or indirect means. This exchange is bidirectional and supports essential microbial oxidation-reduction processes, such as respiration and photosynthesis. The microbial capacity to use electrons from insoluble electron donors, such as redox-active minerals, poised electrodes, or even other microbial cells is called extracellular electron uptake (EEU). Autotrophs with this capability can thrive in nutrient and soluble electron donor-deficient environments. As primary producers, autotrophic microbes capable of EEU greatly impact microbial ecology and play important roles in matter and energy flow in the biosphere. In this review, we discuss EEU-driven autotrophic metabolisms, their mechanism and physiology, and highlight their ecological, evolutionary, and biotechnological implications.
引用
收藏
页码:863 / 876
页数:14
相关论文
共 50 条
  • [1] Excess carbon in aquatic organisms and ecosystems: Physiological, ecological, and evolutionary implications
    Hessen, Dag O.
    Anderson, Thomas R.
    LIMNOLOGY AND OCEANOGRAPHY, 2008, 53 (04) : 1685 - 1696
  • [2] The ecological and evolutionary implications of microrefugia
    Mee, Jonathan A.
    Moore, Jean-Sebastien
    JOURNAL OF BIOGEOGRAPHY, 2014, 41 (05) : 837 - 841
  • [3] Extracellular electron transfer in Shewanella and other microbes
    Gralnick, Jeff
    JOURNAL OF BIOLOGICAL CHEMISTRY, 2023, 299 (03) : S462 - S462
  • [4] Uptake, Accumulation and Toxicity of Silver Nanoparticle in Autotrophic Plants, and Heterotrophic Microbes: A Concentric Review
    Tripathi, Durgesh K.
    Tripathi, Ashutosh
    Shweta
    Singh, Swati
    Singh, Yashwant
    Vishwakarma, Kanchan
    Yadav, Gaurav
    Sharma, Shivesh
    Singh, Vivek K.
    Mishra, Rohit K.
    Upadhyay, R. G.
    Dubey, Nawal K.
    Lee, Yonghoon
    Chauhan, Devendra K.
    FRONTIERS IN MICROBIOLOGY, 2017, 8
  • [5] Physiological diversity in insects: Ecological and evolutionary contexts
    Chown, Steven L.
    Terblanche, John S.
    ADVANCES IN INSECT PHYSIOLOGY, VOL 33, 2007, 33 : 50 - 152
  • [6] Myrmecophagy in lizards: evolutionary and ecological implications
    Cavalcanti, Lucas B. Q.
    Costa, Gabriel C.
    Colli, Guarino R.
    Pianka, Eric R.
    Vitt, Laurie J.
    Mesquita, Daniel O.
    ZOOLOGICAL JOURNAL OF THE LINNEAN SOCIETY, 2023, 202 (01)
  • [7] Ecological and Evolutionary Implications of Microbial Dispersal
    Custer, Gordon F.
    Bresciani, Luana
    Dini-Andreote, Francisco
    FRONTIERS IN MICROBIOLOGY, 2022, 13
  • [8] Commentary: The ecological and evolutionary implications of allometry
    Emma Sherratt
    Erin L. McCullough
    Christina J. Painting
    Evolutionary Ecology, 2022, 36 : 431 - 437
  • [9] ECOLOGICAL AND EVOLUTIONARY IMPLICATIONS OF BIRD POLLINATION
    STILES, FG
    AMERICAN ZOOLOGIST, 1978, 18 (04): : 715 - 727
  • [10] Evolutionary and ecological implications of sexual parasitism
    Lehtonen, Jussi
    Schmidt, Daniel J.
    Heubel, Katja
    Kokko, Hanna
    TRENDS IN ECOLOGY & EVOLUTION, 2013, 28 (05) : 297 - 306