Weighted Superposition Attraction (WSA): A swarm intelligence algorithm for optimization problems - Part 2: Constrained optimization

被引:79
|
作者
Baykasoglu, Adil [1 ]
Akpinar, Sener [1 ]
机构
[1] Dokuz Eylul Univ, Fac Engn, Dept Ind Engn, Izmir, Turkey
关键词
WSA algorithm; Non-linear programming; Constrained global optimization; Design optimization; Constraint handling; HARMONY SEARCH ALGORITHM; DESIGN OPTIMIZATION; ENGINEERING OPTIMIZATION; SIMULATION; SYSTEM; CHAOS;
D O I
10.1016/j.asoc.2015.08.052
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
This paper is the second one of the two papers entitled "Weighted Superposition Attraction (WSA) Algorithm", which is about the performance evaluation of the WSA algorithm in solving the constrained global optimization problems. For this purpose, the well-known mechanical design optimization problems, design of a tension/compression coil spring, design of a pressure vessel, design of a welded beam and design of a speed reducer, are selected as test problems. Since all these problems were formulated as constrained global optimization problems, WSA algorithm requires a constraint handling method for tackling them. For this purpose we have selected 6 formerly developed constraint handling methods for adapting into WSA algorithm and analyze the effect of the used constraint handling method on the performance of the WSA algorithm. In other words, we have the aim of producing concluding remarks over the performance and robustness of the WSA algorithm through a set of computational study in solving the constrained global optimization problems. Computational study indicates the robustness and the effectiveness of the WSA in terms of obtained results, reached level of convergence and the capability of coping with the problems of premature convergence, trapping in a local optima and stagnation. (C) 2015 Elsevier B.V. All rights reserved.
引用
收藏
页码:396 / 415
页数:20
相关论文
共 50 条
  • [41] A Novel Particle Swarm Optimization for Constrained Engineering Optimization Problems
    Jiao, Minghai
    Tang, Jiafu
    ADVANCES IN COMPUTATION AND INTELLIGENCE, PROCEEDINGS, 2008, 5370 : 79 - +
  • [42] Easy Particle Swarm Optimization for Nonlinear Constrained Optimization Problems
    Tseng, Hsuan-Yu
    Chu, Pao-Hsien
    Lu, Hao-Chun
    Tsai, Ming-Jyh
    IEEE ACCESS, 2021, 9 : 124757 - 124767
  • [43] An New Vector Particle Swarm Optimization for Constrained Optimization Problems
    Sun, Chao-li
    Zeng, Jian-chao
    Pan, Jeng-shyang
    INTERNATIONAL JOINT CONFERENCE ON COMPUTATIONAL SCIENCES AND OPTIMIZATION, VOL 1, PROCEEDINGS, 2009, : 485 - +
  • [44] Solving constrained optimization problems with quantum particle swarm optimization
    Liu, J
    Sun, J
    Xu, WB
    DCABES AND ICPACE JOINT CONFERENCE ON DISTRIBUTED ALGORITHMS FOR SCIENCE AND ENGINEERING, 2005, : 99 - 103
  • [45] A scattering and repulsive swarm intelligence algorithm for solving global optimization problems
    Pandit, Diptangshu
    Zhang, Li
    Chattopadhyay, Samiran
    Lim, Chee Peng
    Liu Chengyu
    KNOWLEDGE-BASED SYSTEMS, 2018, 156 : 12 - 42
  • [46] Robust optimization over time for constrained optimization based on swarm intelligence
    Huang Y.-J.
    Jin Y.-C.
    Hao K.-R.
    Kongzhi yu Juece/Control and Decision, 2020, 35 (03): : 740 - 748
  • [47] Solution of structural and mathematical optimization problems using a new hybrid swarm intelligence optimization algorithm
    Mortazavi, Ali
    Togan, Vedat
    Moloodpoor, Mahsa
    ADVANCES IN ENGINEERING SOFTWARE, 2019, 127 : 106 - 123
  • [48] Particle Swarm Optimization Algorithm for Solving Optimization Problems
    Ozsaglam, M. Yasin
    Cunkas, Mehmet
    JOURNAL OF POLYTECHNIC-POLITEKNIK DERGISI, 2008, 11 (04): : 299 - 305
  • [49] Chaos Particle Swarm Optimization Algorithm for Optimization Problems
    Liu, Wenbin
    Luo, Nengsheng
    Pan, Guo
    Ouyang, Aijia
    INTERNATIONAL JOURNAL OF PATTERN RECOGNITION AND ARTIFICIAL INTELLIGENCE, 2018, 32 (11)
  • [50] Attraction-Repulsion Optimization Algorithm for Global Optimization Problems
    Cymerys, Karol
    Oszust, Mariusz
    SWARM AND EVOLUTIONARY COMPUTATION, 2024, 84