CONTINUOUS-TIME RANDOM WALK MODEL OF RELAXATION OF TWO-STATE SYSTEMS

被引:2
|
作者
Denisov, S. I. [1 ]
Bystrik, Yu. S. [1 ]
机构
[1] Sumy State Univ, UA-40007 Sumy, Ukraine
来源
ACTA PHYSICA POLONICA B | 2015年 / 46卷 / 05期
关键词
ANOMALOUS DIFFUSION; MAGNETIZATION; MAGNETS; CLUSTER;
D O I
10.5506/APhysPolB.46.931
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
Using the continuous-time random walk (CTRW) approach, we study the phenomenon of relaxation of two-state systems whose elements evolve according to a dichotomous process. Two characteristics of relaxation, the probability density function of the waiting times difference and the relaxation law, are of our particular interest. For systems characterized by the Erlang distributions of waiting times, we consider different regimes of relaxation and show that, under certain conditions, the relaxation process can be non-monotonic. By studying the asymptotic behavior of the relaxation process, we demonstrate that heavy and superheavy tails of waiting time distributions correspond to slow and superslow relaxation, respectively.
引用
收藏
页码:931 / 947
页数:17
相关论文
共 50 条
  • [1] A Continuous-Time Random Walk Extension of the Gillis Model
    Pozzoli, Gaia
    Radice, Mattia
    Onofri, Manuele
    Artuso, Roberto
    ENTROPY, 2020, 22 (12) : 1 - 29
  • [2] A continuous-time persistent random walk model for flocking
    Escaff, Daniel
    Toral, Raul
    Van den Broeck, Christian
    Lindenberg, Katja
    CHAOS, 2018, 28 (07)
  • [3] Continuous time random walk model as a model of anomalous relaxation
    Gomi, S
    Yonezawa, F
    JOURNAL OF NON-CRYSTALLINE SOLIDS, 1996, 200 : 521 - 524
  • [4] CONTINUOUS-TIME RANDOM-WALK IN DISORDERED-SYSTEMS
    SRIVASTAVA, V
    LECTURE NOTES IN PHYSICS, 1983, 184 : 279 - 285
  • [5] HOPPING CONDUCTION AND THE CONTINUOUS-TIME RANDOM-WALK MODEL
    KIVELSON, S
    PHYSICAL REVIEW B, 1980, 21 (12): : 5755 - 5767
  • [6] FROM DISCRETE TO CONTINUOUS-TIME IN A RANDOM-WALK MODEL
    VANDENBOOGAARD, HFP
    JOHANNESMA, PIM
    STOCHASTIC PROCESSES AND THEIR APPLICATIONS, 1985, 19 (01) : 41 - 41
  • [7] Continuous-time random-walk model for financial distributions
    Masoliver, J
    Montero, M
    Weiss, GH
    PHYSICAL REVIEW E, 2003, 67 (02):
  • [8] CONTINUOUS-TIME RANDOM-WALK MODEL FOR SUPERIONIC CONDUCTORS
    BRIOZZO, CB
    BUDDE, CE
    CACERES, MO
    PHYSICAL REVIEW A, 1989, 39 (11): : 6010 - 6015
  • [9] MULTIENERGETIC CONTINUOUS-TIME RANDOM-WALK
    CACERES, MO
    WIO, HS
    ZEITSCHRIFT FUR PHYSIK B-CONDENSED MATTER, 1984, 54 (02): : 175 - 181
  • [10] Dephasing by a continuous-time random walk process
    Packwood, Daniel M.
    Tanimura, Yoshitaka
    PHYSICAL REVIEW E, 2012, 86 (01):