Electronic band structures of Ge1-xSnx semiconductors: A first-principles density functional theory study

被引:33
|
作者
Lee, Ming-Hsien [1 ]
Liu, Po-Liang [2 ]
Hong, Yung-An [2 ]
Chou, Yen-Ting [2 ]
Hong, Jia-Yang [2 ]
Siao, Yu-Jin [2 ]
机构
[1] Tamkang Univ, Dept Phys, Taipei 251, Taiwan
[2] Natl Chung Hsing Univ, Grad Inst Precis Engn, Taichung 402, Taiwan
关键词
AB-INITIO; GE; STABILITY; ALLOYS; SN;
D O I
10.1063/1.4790362
中图分类号
O59 [应用物理学];
学科分类号
摘要
We conduct first-principles total-energy density functional calculations to study the band structures in Ge1-xSnx infrared semiconductor alloys. The norm-conserving optimized pseudopotentials of Ge and Sn have been constructed for electronic structure calculations. The composition-bandgap relationships in Ge1-xSnx lattices are evaluated by a detailed comparison of structural models and their electronic band structures. The critical Sn composition related to the transition from indirect- to direct-gap in Ge1-xSnx alloys is estimated to be as low as x similar to 0.016 determined from the parametric fit. Our results show that the crossover Sn concentration occurs at a lower critical Sn concentration than the values predicted from the absorption measurements. However, early results indicate that the reliability of the critical Sn concentration from such measurements is hard to establish, since the indirect gap absorption is much weaker than the direct gap absorption. We find that the direct band gap decreases exponentially with the Sn composition over the range 0 < x < 0: 375 and the alloys become metallic for x > 0.375, in very good agreement with the theoretical observed behavior [D. W. Jenkins and J. D. Dow, Phys. Rev. B 36, 7994, 1987]. For homonuclear and heteronuclear complexes of Ge1-xSnx alloys, the indirect band gap at L-pointis is found to decrease homonuclear Ge-Ge bonds or increase homonuclear Sn-Sn bonds as a result of the reduced L valley. All findings agree with previously reported experimental and theoretical results. The analysis suggests that the top of valence band exhibits the localization of bond charge and the bottom of the conduction band is composed of the Ge 4s4p and/or Sn 5s5p atomic orbits. (C) 2013 American Institute of Physics. [http://dx.doi.org/10.1063/1.4790362]
引用
收藏
页数:5
相关论文
共 50 条
  • [32] First-Principles Study of Electronic Structure And Physical Properties of MIIIN Semiconductors
    Zhongxiang Haibin Wang
    Zheng Xie
    Yong Zhou
    Ke Zhang
    Russian Journal of Physical Chemistry B, 2021, 15 : 949 - 953
  • [33] First-Principles Study of Electronic Structure And Physical Properties of MIIIN Semiconductors
    Wang, Haibin
    Xie, Zhongxiang
    Zhou, Zheng
    Zhang, Yong
    Zhu, Ke
    RUSSIAN JOURNAL OF PHYSICAL CHEMISTRY B, 2021, 15 (06) : 949 - 953
  • [34] The Band Gap Problem: the State of the Art of First-Principles Electronic Band Structure Theory
    Hong, Jiang
    PROGRESS IN CHEMISTRY, 2012, 24 (06) : 910 - 927
  • [35] First-principles density functional theory study of the structural, electronic, and vibrational properties of the highly energetic molecule, azidopentazole.
    Richardson, SL
    Pederson, MR
    Kortus, J
    ABSTRACTS OF PAPERS OF THE AMERICAN CHEMICAL SOCIETY, 2001, 222 : U113 - U113
  • [36] Biaxial strain induced tunable electronic properties study of ZnO nanoparticles via first-principles density functional theory
    Soni, Himanshu
    Singh, Ankita
    Mishra, Ashish Kumar
    MATERIALS SCIENCE AND ENGINEERING B-ADVANCED FUNCTIONAL SOLID-STATE MATERIALS, 2023, 288
  • [37] The effects of different possible modes of uniaxial strain on the tunability of electronic and band structures in MoS2 monolayer nanosheet via first-principles density functional theory
    Dimple
    Jena, Nityasagar
    Behere, Shounak Dhananjay
    De Sarkar, Abir
    PRAMANA-JOURNAL OF PHYSICS, 2017, 89 (01):
  • [38] Chemical engineering of adamantane by lithium functionalization: A first-principles density functional theory study
    Ranjbar, Ahmad
    Khazaei, Mohammad
    Venkataramanan, Natarajan Sathiyamoorthy
    Lee, Hoonkyung
    Kawazoe, Yoshiyuki
    PHYSICAL REVIEW B, 2011, 83 (11)
  • [39] First-principles density functional theory study of generalized stacking faults in TiN and MgO
    Yadav, S. K.
    Liu, X. -Y
    Wang, J.
    Ramprasad, R.
    Misra, A.
    Hoagland, R. G.
    PHILOSOPHICAL MAGAZINE, 2014, 94 (05) : 464 - 475
  • [40] Adsorption of chlorophenol on the Cu(111) surface: A first-principles density functional theory study
    Altarawneh, Mohammednoor
    Radny, Marian W.
    Smith, Phillip V.
    Mackie, John C.
    Kennedy, Eric M.
    Dlugogorski, Bogdan Z.
    APPLIED SURFACE SCIENCE, 2008, 254 (14) : 4218 - 4224