Bed angle detection in hospital room using Microsoft Kinect V2

被引:0
|
作者
Liu, Liang [1 ]
Mehrotra, Sanjay [1 ]
机构
[1] Northwestern Univ, Dept Ind Engn & Management Sci, Evanston, IL 60208 USA
关键词
PNEUMONIA; ELEVATION; PRESSURE;
D O I
暂无
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
This paper will focus on bed angle detection in hospital room automatically using the latest Kinect sensor. The developed system is an ideal application for nursing staff to monitoring the bed status for patient, especially under the situation that the patient is alone. The patient bed is reconstructed from point cloud data using polynomial plane fitting. The analysis to the detected bed angle could help the nursing staff to understand the potential developed hospital acquired infection (HAI) and the health situation of the patient, and acquire informative knowledge of the relation between bed angle and disease recovery to decide appropriate treatment strategy.
引用
收藏
页码:277 / 280
页数:4
相关论文
共 50 条
  • [41] A 3D Deep Learning Approach for Classification of Gait Abnormalities Using Microsoft Kinect V2 Sensor
    Shoryabi, Milad
    Foroutannia, Ali
    Rowhanimanesh, Alireza
    2021 26TH INTERNATIONAL COMPUTER CONFERENCE, COMPUTER SOCIETY OF IRAN (CSICC), 2021,
  • [42] Multiple Kinect V2 Calibration
    Cordova-Esparza, Diana-Margarita
    Terven, Juan R.
    Jimenez-Hernandez, Hugo
    Vazquez-Cervantes, Alberto
    Herrera-Navarro, Ana-Marcela
    Ramirez-Pedraza, Alfonso
    AUTOMATIKA, 2016, 57 (03) : 810 - 821
  • [43] Projectable Interactive Surface Using Microsoft Kinect V2: Recovering Information from Coarse Data to Detect Touch
    Sharma, P.
    Joshi, R. P.
    Boby, R. A.
    Saha, S. K.
    Matsumaru, T.
    2015 IEEE/SICE INTERNATIONAL SYMPOSIUM ON SYSTEM INTEGRATION (SII), 2015, : 795 - 800
  • [44] Detection of Patient's Bed Statuses in 3D Using A Microsoft Kinect
    Li, Yun
    Berkowitz, Lyle
    Noskin, Gary
    Mehrotra, Sanjay
    2014 36TH ANNUAL INTERNATIONAL CONFERENCE OF THE IEEE ENGINEERING IN MEDICINE AND BIOLOGY SOCIETY (EMBC), 2014, : 5900 - 5903
  • [45] Multispectral Hand Recognition Using the Kinect v2 Sensor
    Samoil, S.
    Yanushkevich, S. N.
    2016 IEEE CONGRESS ON EVOLUTIONARY COMPUTATION (CEC), 2016, : 4258 - 4264
  • [46] Evaluation of the Azure Kinect and Its Comparison to Kinect V1 and Kinect V2
    Tolgyessy, Michal
    Dekan, Martin
    Chovanec, Lubos
    Hubinsky, Peter
    SENSORS, 2021, 21 (02) : 1 - 25
  • [47] A Comparison Between Heuristic And Machine Learning Techniques In Fall Detection Using Kinect v2
    Amini, Amin
    Banitsas, Konstantinos
    Cosmas, John
    2016 IEEE INTERNATIONAL SYMPOSIUM ON MEDICAL MEASUREMENTS AND APPLICATIONS (MEMEA), 2016, : 363 - 368
  • [48] HemoKinect: A Microsoft Kinect V2 Based Exergaming Software to Supervise Physical Exercise of Patients with Hemophilia
    Mateo, Fernando
    Soria-Olivas, Emilio
    Carrasco, Juan J.
    Bonanad, Santiago
    Querol, Felipe
    Perez-Alenda, Sofia
    SENSORS, 2018, 18 (08)
  • [49] Tai Chi Care: An Exergaming Software using Microsoft Kinect V2 for Blind or Low Vision Person during Confinement
    Bouri, Marwa
    Khalfallah, Ali
    Bouhlel, Med Salim
    INTERNATIONAL JOURNAL OF ADVANCED COMPUTER SCIENCE AND APPLICATIONS, 2020, 11 (07) : 147 - 153
  • [50] Effects of camera viewing angles on tracking kinematic gait patterns using Azure Kinect, Kinect v2 and Orbbec Astra Pro v2
    Yeung, Ling-Fung
    Yang, Zhenqun
    Cheng, Kenneth Chik-Chi
    Du, Dan
    Tong, Raymond Kai-Yu
    GAIT & POSTURE, 2021, 87 : 19 - 26