Integrated active and semi-active control for seat suspension of a heavy duty vehicle

被引:22
|
作者
Ning, Donghong [1 ]
Sun, Shuaishuai [2 ]
Du, Haiping [1 ]
Li, Weihua [2 ]
机构
[1] Univ Wollongong, Sch Elect Comp & Telecommun Engn, Wollongong, NSW 2522, Australia
[2] Univ Wollongong, Sch Mech Mat & Mechatron Engn, Wollongong, NSW, Australia
基金
澳大利亚研究理事会;
关键词
Active control; semi-active control; seat suspension; vibration control; VIBRATION CONTROL; DESIGN; SYSTEM;
D O I
10.1177/1045389X17721032
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
In this article, an integrated active and semi-active seat suspension for heavy duty vehicles is proposed, and its prototype is built; an integrated control algorithm applied measurable variables (suspension relative displacement and seat acceleration) is designed for the proposed seat prototype. In this seat prototype, an active actuator with low maximum force output (70N), which is insufficient for an active seat suspension to control the resonance vibration, is applied together with a rotary magnetorheological damper. The magnetorheological damper can suppress the high vibration energy in resonance frequency, and then a small active force can further improve the seat suspension performance greatly. The suspension's dynamic property is tested with a MTS system, and its model is identified based on the testing data. A modified on-off controller is applied for the rotary magnetorheological damper. A H controller with the compensation of a disturbance observer is used for the active actuator. Considering the energy saving, the control strategy is designed as that only when the magnetorheological damper is in the off state (0A current), the active actuator will have active force output, or the active actuator is off. Both simulation and experiment are implemented to verify the proposed seat suspension and controller. In the sinusoidal excitations experiment, the acceleration transmissibility of integrated control seat has lowest value in resonance frequency and frequencies above the resonance, when compared with power on (0.7A current), power off (0A current) and semi-active control seat. In the random vibration experiment, the root mean square acceleration of integrated control seat suspension has 47.7%, 33.1% and 26.5% reductions when compared with above-mentioned three kinds of seat suspension. The power spectral density comparison indicates that the integrated seat suspension will have good performance in practical application. The integrated active and semi-active seat suspension can fill energy consumption gap between active and semi-active control seat suspension.
引用
收藏
页码:91 / 100
页数:10
相关论文
共 50 条
  • [21] Modal Vertical Vehicle Dynamics Control for Semi-Active and Active Suspension Systems
    Enders, Erik
    Karle, Phillip
    Bonelli, Giulia
    Killian, Daniel
    Burkhard, Georg
    2020 FIFTEENTH INTERNATIONAL CONFERENCE ON ECOLOGICAL VEHICLES AND RENEWABLE ENERGIES (EVER), 2020,
  • [22] Moderated reinforcement learning of active and semi-active vehicle suspension control laws
    Frost, GP
    Gordon, TJ
    Howell, MN
    Wu, QH
    PROCEEDINGS OF THE INSTITUTION OF MECHANICAL ENGINEERS PART I-JOURNAL OF SYSTEMS AND CONTROL ENGINEERING, 1996, 210 (04) : 249 - 257
  • [23] Integrated semi-active seat suspension for both longitudinal and vertical vibration isolation
    Bai, Xian-Xu
    Jiang, Peng
    Qian, Li-Jun
    JOURNAL OF INTELLIGENT MATERIAL SYSTEMS AND STRUCTURES, 2017, 28 (08) : 1036 - 1049
  • [24] Integrated control design for vehicle semi-active suspension system with variable stiffness stabilizer
    Kosemura R.
    Suzuki T.
    Takahashi M.
    Nihon Kikai Gakkai Ronbunshu, C Hen/Transactions of the Japan Society of Mechanical Engineers, Part C, 2010, 76 (761): : 84 - 92
  • [25] Optimization of Semi-active Seat Suspension with Magnetorheological Damper
    Segla, Stefan
    Kajaste, J.
    Keski-Honkola, P.
    VIBRATION PROBLEMS ICOVP 2011, 2011, 139 : 393 - 398
  • [26] A SEMI-ACTIVE PNEUMATIC SUSPENSION OF THE WORKING MACHINE SEAT
    Wos, P.
    Dondorf, R.
    ENGINEERING MECHANICS 2017, 2017, : 1066 - 1069
  • [27] Vehicle suspension with magnetorheological damper under semi-active control
    Jia, Qi-Fen
    Xu, Heng-Bo
    Wang, Ying
    Liu, Xi-Jun
    Tianjin Daxue Xuebao (Ziran Kexue yu Gongcheng Jishu Ban)/Journal of Tianjin University Science and Technology, 2006, 39 (07): : 768 - 772
  • [28] Optimal and robust damping control for semi-active vehicle suspension
    Rettig, U
    von Stryk, O
    PROGRESS IN INDUSTRIAL MATHEMATICS AT ECMI 2002, 2004, 5 : 353 - 361
  • [29] Design of Vehicle Semi-active Suspension System Control Unit
    Zhang, Hongkun
    Li, Wenjun
    ADVANCES IN MANUFACTURING TECHNOLOGY, PTS 1-4, 2012, 220-223 : 1995 - +
  • [30] Research on fuzzy control of the vehicle's semi-active suspension
    Chen, Zhengke
    PROCEEDINGS OF THE 2015 INTERNATIONAL CONFERENCE ON MANAGEMENT, EDUCATION, INFORMATION AND CONTROL, 2015, 125 : 631 - 636