Traffic Prediction using a Generic Self-Evolving Takagi-Sugeno-Kang (GSETSK) Fuzzy Neural Network

被引:0
|
作者
Ngoc Nam Nguyen [1 ]
Quek, Chai [1 ]
Cheu, Eng Yeow [2 ]
机构
[1] Nanyang Technol Univ, Ctr Computat Intelligence, Singapore, Singapore
[2] ASTAR, Inst Infocomm Res, Singapore, Singapore
来源
2012 INTERNATIONAL JOINT CONFERENCE ON NEURAL NETWORKS (IJCNN) | 2012年
关键词
SYSTEM; IDENTIFICATION; MODELS;
D O I
暂无
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
This paper analyses traffic prediction based on a Generic Self-Evolving Takagi-Sugeno-Kang (GSETSK) fuzzy neural network. Traffic prediction is a problem that requires online adaptive systems with high accuracy performance. The proposed GSETSK framework can learn incrementally with high accuracy without any prior assumption about the data sets. To keep an up-to-date fuzzy rule base, a novel 'gradual'-forgetting-based rule pruning approach is proposed to unlearn outdated data by deleting obsolete rules. Experiments conducted on real-life traffic data confirm the validity of the design and the accuracy performance of the GSETSK system.
引用
收藏
页数:7
相关论文
共 50 条
  • [21] Stabilization of Type-2 Fuzzy Takagi-Sugeno-Kang Identifier Using Lyapunov Functions
    Kayacan, Erdal
    Khanesar, Mojtaba Ahmadieh
    Kayacan, Erkan
    2015 IEEE INTERNATIONAL CONFERENCE ON FUZZY SYSTEMS (FUZZ-IEEE 2015), 2015,
  • [22] Type-2 Takagi-Sugeno-Kang fuzzy logic modeling using subtractive clustering
    Ren, Qun
    Baron, Luc
    Balazinski, Marek
    NAFIPS 2006 - 2006 ANNUAL MEETING OF THE NORTH AMERICAN FUZZY INFORMATION PROCESSING SOCIETY, VOLS 1 AND 2, 2006, : 120 - +
  • [23] 3D Image Quality Assessment Using Takagi-Sugeno-Kang Fuzzy Model
    Dordevic, Dragana
    Kukolj, Dragan
    Le Callet, Patrick
    2014 IEEE 12TH INTERNATIONAL SYMPOSIUM ON INTELLIGENT SYSTEMS AND INFORMATICS (SISY), 2014, : 309 - 314
  • [24] Takagi-sugeno-kang fuzzy controller design for nonlinear systems using the scaling gain adaptation
    Tsai P.-S.
    Wu T.-F.
    Hu N.-T.
    Chen J.-Y.
    Wu, Ter-Feng (tfwu@niu.edu.tw), 1600, Computer Society of the Republic of China (28): : 114 - 121
  • [25] Optimal design of Takagi-Sugeno-Kang fuzzy neural network based on balancing composite motion optimization for chaotic synchronization with uncertainty and disturbance
    Nguyen, Van-Truong
    Pham, Duc-Hung
    Nguyen, Quoc-Cuong
    Vu, Mai The
    RESULTS IN ENGINEERING, 2025, 25
  • [26] Uncertainty Modeling for Multicenter Autism Spectrum Disorder Classification Using Takagi-Sugeno-Kang Fuzzy Systems
    Hu, Zhongyi
    Wang, Jun
    Zhang, Chunxiang
    Luo, Zhenzhen
    Luo, Xiaoqing
    Xiao, Lei
    Shi, Jun
    IEEE TRANSACTIONS ON COGNITIVE AND DEVELOPMENTAL SYSTEMS, 2022, 14 (02) : 730 - 739
  • [27] Experimental forward and inverse modelling of magnetorheological dampers using an optimal Takagi-Sugeno-Kang fuzzy scheme
    Askari, Mohsen
    Li, Jianchun
    Samali, Bijan
    Gu, Xiaoyu
    JOURNAL OF INTELLIGENT MATERIAL SYSTEMS AND STRUCTURES, 2016, 27 (07) : 904 - 914
  • [28] Temperature Controller Using the Takagi-Sugeno-Kang Fuzzy Inference System for an Industrial Heat Treatment Furnace
    Buele, Jorge
    Rios-Cando, Paulina
    Brito, Geovanni
    Moreno-P, Rodrigo
    Salazar, Franklin W.
    COMPUTATIONAL SCIENCE AND ITS APPLICATIONS - ICCSA 2020, PT VI, 2020, 12254 : 351 - 366
  • [29] Identification and Prediction of Dynamic Systems Using an Interactively Recurrent Self-Evolving Fuzzy Neural Network
    Lin, Yang-Yin
    Chang, Jyh-Yeong
    Lin, Chin-Teng
    IEEE TRANSACTIONS ON NEURAL NETWORKS AND LEARNING SYSTEMS, 2013, 24 (02) : 310 - 321
  • [30] Control the movement of an inverted pendulum by using a first-order type Takagi-Sugeno-Kang fuzzy controller
    Kulikova, I., V
    IV INTERNATIONAL SCIENTIFIC AND TECHNICAL CONFERENCE MECHANICAL SCIENCE AND TECHNOLOGY UPDATE (MSTU-2020), 2020, 1546