Semi-Supervised Eigenbasis Novelty Detection

被引:0
|
作者
Thompson, David R. [1 ]
Majid, Walid A. [1 ]
Reed, Colorado J. [1 ]
Wagstaff, Kiri L. [1 ]
机构
[1] CALTECH, Jet Prop Lab, Pasadena, CA 91125 USA
关键词
novelty detection; time series analysis; radio astronomy; machine learning; anomaly detection; radio transients; fast transients; semi-supervised learning;
D O I
10.1002/sam.11148
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
We present a semi-supervised online method for novelty detection and evaluate its performance for radio astronomy time series data. Our approach uses sparse, adaptive eigenbases to combine (1) prior knowledge about uninteresting signals with (2) online estimation of the current data properties to enable highly sensitive and precise detection of novel signals. We apply Semi-Supervised Eigenbasis Novelty Detection (SSEND) to the problem of detecting fast transient radio anomalies and compare it to current alternative algorithms. Tests based on observations from the Parkes Multibeam Survey show both effective detection of interesting rare events and robustness to known false alarm anomalies. (c) 2012 Wiley Periodicals, Inc.
引用
收藏
页码:195 / 204
页数:10
相关论文
共 50 条
  • [41] Label Matching Semi-Supervised Object Detection
    Chen, Binbin
    Chen, Weijie
    Yang, Shicai
    Xuan, Yunyi
    Song, Jie
    Xie, Di
    Pu, Shiliang
    Song, Mingli
    Zhuang, Yueting
    2022 IEEE/CVF CONFERENCE ON COMPUTER VISION AND PATTERN RECOGNITION (CVPR), 2022, : 14361 - 14370
  • [42] Improving Localization for Semi-Supervised Object Detection
    Rossi, Leonardo
    Karimi, Akbar
    Prati, Andrea
    IMAGE ANALYSIS AND PROCESSING, ICIAP 2022, PT II, 2022, 13232 : 516 - 527
  • [43] Semi-supervised Active Salient Object Detection
    Lv, Yunqiu
    Liu, Bowen
    Zhang, Jing
    Dai, Yuchao
    Li, Aixuan
    Zhang, Tong
    PATTERN RECOGNITION, 2022, 123
  • [44] SEMI-SUPERVISED GAS DETECTION IN HYPERSPECTRAL IMAGING
    Ozturk, Safak
    Artan, Yusuf
    Esin, Yunus Emre
    Yaman, Mustafa
    Erdem, Ahmet
    2015 IEEE INTERNATIONAL GEOSCIENCE AND REMOTE SENSING SYMPOSIUM (IGARSS), 2015, : 469 - 472
  • [45] Semi-supervised Cavitation Detection for Centrifugal Pumps
    Yoo, Donghwi
    Choi, Minseok
    Kim, Chungeon
    Oh, Hyunseok
    TRANSACTIONS OF THE KOREAN SOCIETY OF MECHANICAL ENGINEERS A, 2022, 46 (02) : 153 - 162
  • [46] Active Teacher for Semi-Supervised Object Detection
    Mi, Peng
    Lin, Jianghang
    Zhou, Yiyi
    Shen, Yunhang
    Luo, Gen
    Sun, Xiaoshuai
    Cao, Liujuan
    Fu, Rongrong
    Xu, Qiang
    Ji, Rongrong
    2022 IEEE/CVF CONFERENCE ON COMPUTER VISION AND PATTERN RECOGNITION (CVPR 2022), 2022, : 14462 - 14471
  • [47] Improved semi-supervised autoencoder for deception detection
    Fu, Hongliang
    Lei, Peizhi
    Tao, Huawei
    Zhao, Li
    Yang, Jing
    PLOS ONE, 2019, 14 (10):
  • [48] A Semi-Supervised Framework for Social Spammer Detection
    Li, Zhaoxing
    Zhang, Xianchao
    Shen, Hua
    Liang, Wenxin
    He, Zengyou
    ADVANCES IN KNOWLEDGE DISCOVERY AND DATA MINING, PART II, 2015, 9078 : 177 - 188
  • [49] Supervised and semi-supervised classifiers for the detection of flood-prone areas
    Giorgio Gnecco
    Rita Morisi
    Giorgio Roth
    Marcello Sanguineti
    Angela Celeste Taramasso
    Soft Computing, 2017, 21 : 3673 - 3685
  • [50] Introducing a Method for Combining supervised and semi-supervised methods in fraud detection
    Eshghi, Abdollah
    Kargari, Mehrdad
    PROCEEDINGS OF 2019 15TH IRAN INTERNATIONAL INDUSTRIAL ENGINEERING CONFERENCE (IIIEC), 2019, : 23 - 30