On model-theoretic tree properties

被引:44
|
作者
Chernikov, Artem [1 ]
Ramsey, Nicholas [2 ]
机构
[1] Univ Calif Los Angeles, Dept Math, Los Angeles, CA 90095 USA
[2] Univ Calif Berkeley, Grp Log & Methodol Sci, Evans Hall, Berkeley, CA 94720 USA
基金
英国工程与自然科学研究理事会;
关键词
Tree properties; TP1; TP2; NSOP1; tree indiscernibles; independent amalgamation; FORKING;
D O I
10.1142/S0219061316500094
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We study model theoretic tree properties (TP, TP1, TP2) and their associated cardinal invariants (k(cdt), k(sct), k(inp), respectively). In particular, we obtain a quantitative refinement of Shelah's theorem (TP double right arrow TP1 V TP2) for countable theories, show that TP1 is always witnessed by a formula in a single variable (partially answering a question of Shelah) and that weak k - TP1 is equivalent to TP1 (answering a question of Kim and Kim). Besides, we give a characterization of NSOP1 via a version of independent amalgamation of types and apply this criterion to verify that some examples in the literature are indeed NSOP1.
引用
收藏
页数:41
相关论文
共 50 条
  • [1] Classifying model-theoretic properties
    Conidis, Chris J.
    JOURNAL OF SYMBOLIC LOGIC, 2008, 73 (03) : 885 - 905
  • [2] Model-Theoretic Properties of ω-Automatic Structures
    Abu Zaid, Faried
    Graedel, Erich
    Kaiser, Lukasz
    Pakusa, Wied
    THEORY OF COMPUTING SYSTEMS, 2014, 55 (04) : 856 - 880
  • [3] Model-theoretic properties of regular polygons
    Mikhalev A.V.
    Ovchinnikova E.V.
    Palyutin A.A.
    Stepanova A.A.
    Journal of Mathematical Sciences, 2007, 140 (2) : 250 - 285
  • [4] Algebraic and model-theoretic properties of tilings
    Oger, F
    THEORETICAL COMPUTER SCIENCE, 2004, 319 (1-3) : 103 - 126
  • [5] Model-Theoretic Properties of ω-Automatic Structures
    Faried Abu Zaid
    Erich Grädel
    Łukasz Kaiser
    Wied Pakusa
    Theory of Computing Systems, 2014, 55 : 856 - 880
  • [6] MODEL-THEORETIC PROPERTIES OF PAROVICENKO SPACE
    MIJAJLOVIC, Z
    JOURNAL OF SYMBOLIC LOGIC, 1984, 49 (02) : 697 - 698
  • [7] MODEL-THEORETIC PROPERTIES CHARACTERIZING PEANO ARITHMETIC
    KAYE, R
    JOURNAL OF SYMBOLIC LOGIC, 1991, 56 (03) : 949 - 963
  • [8] MODEL-THEORETIC AND TOPOLOGICAL PROPERTIES OF FAMILIES OF THEORIES
    Markhabatov, N. D.
    ALGEBRA AND LOGIC, 2021, 60 (03) : 232 - 235
  • [9] MODEL-THEORETIC PROPERTIES OF THE #-COMPANION OF A JONSSON SET
    Yeshkeyev, A. R.
    Kasymetova, M. T.
    Shamatayeva, N. K.
    EURASIAN MATHEMATICAL JOURNAL, 2018, 9 (02): : 68 - 81
  • [10] Model-Theoretic Properties of Dynamics on the Cantor Set
    Eagle, Christopher J.
    Getz, Alan
    NOTRE DAME JOURNAL OF FORMAL LOGIC, 2022, 63 (03) : 357 - 371