Semi-parametric estimation of a generalized threshold regression model under conditional quantile restriction

被引:0
|
作者
Zhang, Zhengyu [1 ,2 ]
机构
[1] Shanghai Univ Finance & Econ, Sch Econ, Shanghai 200433, Peoples R China
[2] Shanghai Acad Social Sci, Ctr Econometr Study, Shanghai, Peoples R China
来源
ECONOMETRICS JOURNAL | 2013年 / 16卷 / 02期
基金
美国国家科学基金会;
关键词
Maximum score method; Quantile regression; Threshold regression model; Transformation model; LEAST-SQUARES ESTIMATOR; MAXIMUM SCORE ESTIMATOR; BINARY RESPONSE MODEL; CHANGE-POINT; TRANSFORMATION MODELS; COVARIATE THRESHOLD; INFERENCE;
D O I
10.1111/ectj.12005
中图分类号
F [经济];
学科分类号
02 ;
摘要
We consider semi-parametric estimation of a generalized threshold regression model with both the link function and the error term distribution left unspecified. We propose for the model a maximum integrated score estimator (MISE) which allows us to estimate the model under weaker conditional quantile restriction. The MISE is shown to have a convergence rate n-1 for the threshold parameter and a regular n-1/2 rate for the remaining parameters. Moreover, it turns out that the estimates for both parts are asymptotically independent in that their limiting distributions are the same as what they would be if the other part were known. Monte Carlo results indicate that our estimator performs reasonably well in finite samples.
引用
收藏
页码:250 / 277
页数:28
相关论文
共 50 条
  • [41] Semi-parametric estimation of ROC curves based on binomial regression modelling
    Lloyd, CJ
    AUSTRALIAN & NEW ZEALAND JOURNAL OF STATISTICS, 2002, 44 (01) : 75 - 86
  • [42] Asymptotic properties of the estimators of the semi-parametric spatial regression model
    Peng Xiaozhi
    Wu Hecheng
    Ma Ling
    COMMUNICATIONS IN STATISTICS-THEORY AND METHODS, 2018, 47 (07) : 1663 - 1678
  • [43] Analysis of failure time using threshold regression with semi-parametric varying coefficients
    Li, Jialiang
    Lee, Mei-Ling Ting
    STATISTICA NEERLANDICA, 2011, 65 (02) : 164 - 182
  • [44] Intrinsic semi-parametric regression model on Grassmannian manifolds with applications
    Sheng, Xuanxuan
    Xiong, Di
    Ying, Shihui
    COMMUNICATIONS IN STATISTICS-SIMULATION AND COMPUTATION, 2024, 53 (08) : 3830 - 3849
  • [45] Reinforcement Learning Method Based on Semi-parametric Regression Model
    Cheng, Yuhu
    Wang, Xuesong
    Tian, Xilan
    2010 CHINESE CONTROL AND DECISION CONFERENCE, VOLS 1-5, 2010, : 11 - 15
  • [46] Semi-parametric second-order reduced-bias high quantile estimation
    Frederico Caeiro
    M. Ivette Gomes
    TEST, 2009, 18 : 392 - 413
  • [47] Semi-parametric second-order reduced-bias high quantile estimation
    Caeiro, Frederico
    Gomes, M. Ivette
    TEST, 2009, 18 (02) : 392 - 413
  • [48] Two-piece distribution based semi-parametric quantile regression for right censored data
    Ewnetu, Worku Biyadgie
    Gijbels, Irene
    Verhasselt, Anneleen
    STATISTICAL PAPERS, 2024, 65 (05) : 2775 - 2810
  • [49] Ownership Structure, Corporate Governance, and Performance of Listed Companies-An Empirical Application of a Semi-Parametric Quantile Regression Model
    Nie, Jiamin
    Ye, Shanli
    SUSTAINABILITY, 2022, 14 (24)
  • [50] SEMI-PARAMETRIC ESTIMATION OF INEQUALITY MEASURES
    Kpanzou, T. A.
    de Wet, T.
    Neethling, A.
    SOUTH AFRICAN STATISTICAL JOURNAL, 2013, 47 (01) : 33 - 48