NUMERICAL PREDICTION OF 3-D VORTEX-INDUCED VIBRATION OF CATENARY RISER IN PLANAR AND NON-PLANAR FLOWS

被引:0
|
作者
Ma, Bowen [1 ,2 ]
Srinil, Narakorn [2 ]
机构
[1] Shanghai Ship & Shipping Res Inst, State Key Lab Nav & Safety Technol, Shanghai, Peoples R China
[2] Newcastle Univ, Sch Engn, Marine Offshore Subsea Technol Grp, Newcastle Upon Tyne, England
基金
英国工程与自然科学研究理事会;
关键词
vortex-induced vibration; VIV; catenary riser; fluid-structure interaction; effect of flow direction; LABORATORY MEASUREMENTS; CURVED CYLINDER; WAKE; MODEL; OSCILLATORS; DYNAMICS;
D O I
暂无
中图分类号
U6 [水路运输]; P75 [海洋工程];
学科分类号
0814 ; 081505 ; 0824 ; 082401 ;
摘要
Vortex-induced vibration (VIV) is one of the most critical issues in deepwater developments due to its resultant fatigue damage to subsea structures such as risers, pipelines and jumpers. Although VIV effects on slender bodies have been comprehensively studied over decades, very few studies have dealt with VIV modelling and prediction of catenary risers in current flows with varying directions leading to complex fluids-fructure interactions. This study advances a numerical model to simulate and predict 3-D VIV responses of a catenary riser in three flow orientations, relative to the riser curvature plane, including concave/convex (planar) and perpendicular (nonplanar) flows. The model is described by equations of cross-flow and in-line responses of the catenary riser coupled with the hydrodynamic forces modelled by the distributed nonlinear wake oscillators. A finite difference method is applied to solve the coupled fluid-structure dynamic system. To consider the approaching flow in different directions, the vortex-induced lift and drag forces are formulated by accounting for the effect of flow angle of attack and the riser-flow relative velocities. Results show VIV features of a long catenary riser exhibiting a standing and travelling wave response pattern. VIV response amplitudes and oscillation frequencies are predicted and compared with experimental results in the literature for both straight and catenary risers. Overall results highlight the model capability in capturing the effect of approaching flow direction on 3-D VIV of the curved inclined flexible riser.
引用
收藏
页数:8
相关论文
共 50 条
  • [11] Prediction model for multidirectional vortex-induced vibrations of catenary riser in convex/concave and perpendicular flows
    Ma, Bowen
    Srinil, Narakorn
    JOURNAL OF FLUIDS AND STRUCTURES, 2023, 117
  • [12] VORTEX-INDUCED VIBRATION OF STEEL CATENARY RISER UNDER VESSEL MOTION
    Wang, Jungao
    Fu, Shixiao
    Baarholm, Rolf
    33RD INTERNATIONAL CONFERENCE ON OCEAN, OFFSHORE AND ARCTIC ENGINEERING, 2014, VOL 2, 2014,
  • [13] Numerical prediction of vortex-induced vibration of flexible riser with thick strip method
    Bao, Y.
    Zhu, H. B.
    Huan, P.
    Wang, R.
    Zhou, D.
    Han, Z. L.
    Palacios, R.
    Graham, M.
    Sherwin, S.
    JOURNAL OF FLUIDS AND STRUCTURES, 2019, 89 : 166 - 173
  • [14] Numerical Simulation of Vortex-induced Vibration Characteristics of Rough Riser
    Han, Xiangxi
    Wu, Jiaming
    Meng, Zhanbin
    Fu, Fei
    Gu, Jian
    Qiu, Ang
    Ship Building of China, 2021, 62 (04) : 166 - 179
  • [15] Effects of vertical and lateral riser-soil interactions on vortex-induced vibration of a steel catenary riser
    Li, Shaojie
    Zhang, Cheng
    Kang, Zhuang
    Ai, Shangmao
    OCEAN ENGINEERING, 2024, 306
  • [16] Numerical investigation of vortex-induced vibration of a riser with internal flow
    Duan, Jinlong
    Chen, Ke
    You, Yunxiang
    Li, Jinlong
    APPLIED OCEAN RESEARCH, 2018, 72 : 110 - 121
  • [17] Spatial-temporal mode transition in vortex-induced vibration of catenary flexible riser
    Zhu, Hongjun
    Hu, Jie
    Gao, Yue
    Zhao, Honglei
    Xu, Wanhai
    JOURNAL OF FLUIDS AND STRUCTURES, 2021, 102
  • [18] Study on vortex-induced vibration characteristics of catenary type riser under oscillatory flow
    Chen D.-P.
    Gu H.-L.
    Li F.-H.
    Li X.-M.
    Guo H.-Y.
    Chuan Bo Li Xue/Journal of Ship Mechanics, 2022, 26 (08): : 1227 - 1236
  • [19] Numerical investigation of vortex shedding and vortex-induced vibration for flexible riser models
    Chen, Zheng-Shou
    Kim, Wu-Joan
    INTERNATIONAL JOURNAL OF NAVAL ARCHITECTURE AND OCEAN ENGINEERING, 2010, 2 (02) : 112 - 118
  • [20] Dominant parameters for vortex-induced vibration of a steel catenary riser under vessel motion
    Wang, Jungao
    Fu, Shixiao
    Larsen, Carl Martin
    Baarholm, Rolf
    Wu, Jie
    Lie, Halvor
    OCEAN ENGINEERING, 2017, 136 : 260 - 271