Regularity of Sn-invariant monomial ideals

被引:6
|
作者
Raicu, Claudiu [1 ,2 ]
机构
[1] Univ Notre Dame, Dept Math, 255 Hurley, Notre Dame, IN 46556 USA
[2] Romanian Acad, Inst Math Simion Stoilow, Bucharest, Romania
基金
美国国家科学基金会;
关键词
Monomial ideals; Regularity; Projective dimension; Extmodules; Local cohomology; LOCAL COHOMOLOGY; ASYMPTOTIC-BEHAVIOR; BETTI NUMBERS; POWERS;
D O I
10.1016/j.jcta.2020.105307
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
For a polynomial ring S in n variables, we consider the natural action of the symmetric group S-n on S by permuting the variables. For an Sn-invariant monomial ideal I subset of S and j >= 0, we give an explicit recipe for computing the modules Ext(S)(j)(S/I, S), and use this to describe the projective dimension and regularity of I. We classify the S-n-invariant monomial ideals Ithat have a linear free resolution, and also characterize those which are Cohen-Macaulay. We then consider two settings for analyzing the asymptotic behavior of regularity: one where we look at powers of a fixed ideal I, and another where we vary the dimension of the ambient polynomial ring and examine the invariant monomial ideals induced by I. In the first case we determine the asymptotic regularity for those ideals Ithat are generated by the S-n-orbit of a single monomial by solving an integer linear optimization problem. In the second case we describe the behavior of regularity for any I, recovering a recent result of Murai. (C) 2020 Elsevier Inc. All rights reserved.
引用
收藏
页数:34
相关论文
共 50 条
  • [21] Stanley depth and Stanley support-regularity of monomial ideals
    Yi-Huang Shen
    Collectanea Mathematica, 2016, 67 : 227 - 246
  • [22] On the Castelnuovo-Mumford regularity and the arithmetic degree of monomial ideals
    Hoa, LT
    Trung, NV
    MATHEMATISCHE ZEITSCHRIFT, 1998, 229 (03) : 519 - 537
  • [23] On the Castelnuovo-Mumford regularity and the arithmetic degree of monomial ideals
    Lê Tuân Hoa
    Ngô Viêt Trung
    Mathematische Zeitschrift, 1998, 229 : 519 - 537
  • [24] Depth and Regularity of Monomial Ideals via Polarization and Combinatorial Optimization
    José Martínez-Bernal
    Susan Morey
    Rafael H. Villarreal
    Carlos E. Vivares
    Acta Mathematica Vietnamica, 2019, 44 : 243 - 268
  • [25] Stanley depth and Stanley support-regularity of monomial ideals
    Shen, Yi-Huang
    COLLECTANEA MATHEMATICA, 2016, 67 (02) : 227 - 246
  • [26] Regularity of symbolic powers of square-free monomial ideals
    Truong Thi Hien
    Tran Nam Trung
    ARKIV FOR MATEMATIK, 2023, 61 (01): : 99 - 121
  • [27] Depth and Regularity of Monomial Ideals via Polarization and Combinatorial Optimization
    Martinez-Bernal, Jose
    Morey, Susan
    Villarreal, Rafael H.
    Vivares, Carlos E.
    ACTA MATHEMATICA VIETNAMICA, 2019, 44 (01) : 243 - 268
  • [28] Asymptotic regularity of invariant chains of edge ideals
    Hoang, Do Trong
    Nguyen, Hop D.
    Tran, Quang Hoa
    JOURNAL OF ALGEBRAIC COMBINATORICS, 2024, 59 (01) : 55 - 94
  • [29] Asymptotic regularity of invariant chains of edge ideals
    Do Trong Hoang
    Hop D. Nguyen
    Quang Hoa Tran
    Journal of Algebraic Combinatorics, 2024, 59 : 55 - 94