Topological Characterization of Classical Waves: The Topological Origin of Magnetostatic Surface Spin Waves

被引:29
|
作者
Yamamoto, Kei [1 ,2 ]
Thiang, Guo Chuan [3 ]
Pirro, Philipp [4 ,5 ]
Kim, Kyoung-Whan [2 ,6 ]
Everschor-Sitte, Karin [2 ]
Saitoh, Eiji [1 ,7 ,8 ]
机构
[1] Japan Atom Energy Agcy, Adv Sci Res Ctr, Tokai, Ibaraki 3191195, Japan
[2] Johannes Gutenberg Univ Mainz, Inst Phys, D-55128 Mainz, Germany
[3] Univ Adelaide, Sch Math Sci, Adelaide, SA 5000, Australia
[4] Tech Univ Kaiserslautern, Fachbereich Phys, D-67663 Kaiserslautern, Germany
[5] Tech Univ Kaiserslautern, Landesforschungszentrum OPTIMAS, D-67663 Kaiserslautern, Germany
[6] Korea Inst Sci & Technol, Ctr Spintron, Seoul 02792, South Korea
[7] Univ Tokyo, Dept Appl Phys, Tokyo 1138656, Japan
[8] Tohoku Univ, Inst Mat Res, Sendai, Miyagi 9808577, Japan
基金
澳大利亚研究理事会;
关键词
BULK-EDGE CORRESPONDENCE; MODES;
D O I
10.1103/PhysRevLett.122.217201
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
We propose a topological characterization of Hamiltonians describing classical waves. Applying it to the magnetostatic surface spin waves that are important in spintronics applications, we settle the speculation over their topological origin. For a class of classical systems that includes spin waves driven by dipole-dipole interactions, we show that the topology is characterized by vortex lines in the Brillouin zone in such a way that the symplectic structure of Hamiltonian mechanics plays an essential role. We define winding numbers around these vortex lines and identify them to be the bulk topological invariants for a class of semimetals. Exploiting the bulk-edge correspondence appropriately reformulated for these classical waves, we predict that surface modes appear but not in a gap of the bulk frequency spectrum. This feature, consistent with the magnetostatic surface spin waves, indicates a broader realm of topological phases of matter beyond spectrally gapped ones.
引用
收藏
页数:5
相关论文
共 50 条
  • [31] Topological coupling of dislocations and magnetization vorticity in spin density waves
    Brazovski, S
    Kirova, N
    JOURNAL DE PHYSIQUE IV, 1999, 9 (P10): : 119 - 121
  • [32] Topological spin density waves in the Hubbard model on a honeycomb lattice
    He, Jing
    Zong, Yan-Hua
    Kou, Su-Peng
    Liang, Ying
    Feng, Shiping
    PHYSICAL REVIEW B, 2011, 84 (03):
  • [33] Intertwined charge and spin density waves in a topological kagome material
    Chen, Y.
    Gaudet, J.
    Marcus, G. G.
    Nomoto, T.
    Chen, T.
    Tomita, T.
    Ikhlas, M.
    Suzuki, H. S.
    Zhao, Y.
    Chen, W. C.
    Strempfer, J.
    Arita, R.
    Nakatsuji, S.
    Broholm, C.
    PHYSICAL REVIEW RESEARCH, 2024, 6 (03):
  • [34] Origin and evolution of surface spin current in topological insulators
    Dankert, Andre
    Bhaskar, Priyamvada
    Khokhriakov, Dmitrii
    Rodrigues, Isabel H.
    Karpiak, Bogdan
    Kamalakar, M. Venkata
    Charpentier, Sophie
    Garate, Ion
    Dash, Saroj P.
    PHYSICAL REVIEW B, 2018, 97 (12)
  • [35] Indicatrices of magnetostatic surface waves
    Annenkov A.Y.
    Gerus S.V.
    Bulletin of the Russian Academy of Sciences: Physics, 2017, 81 (8) : 981 - 983
  • [36] Magnetostatic spin waves in metallic multilayers
    Sukstanskii, A
    Korenivski, V
    JOURNAL OF MAGNETISM AND MAGNETIC MATERIALS, 2000, 218 (2-3) : 144 - 150
  • [37] REFRACTION OF SURFACE MAGNETOSTATIC WAVES
    VASHKOVSKII, AV
    SHAKHNAZARYAN, DG
    PISMA V ZHURNAL TEKHNICHESKOI FIZIKI, 1986, 12 (15): : 908 - 911
  • [38] NONLINEAR SURFACE MAGNETOSTATIC WAVES
    BOARDMAN, AD
    GULYAEV, YV
    NIKITOV, SA
    ZHURNAL EKSPERIMENTALNOI I TEORETICHESKOI FIZIKI, 1989, 95 (06): : 2140 - 2150
  • [39] The effect of parametrically excited spin waves on the dispersion and damping of magnetostatic surface waves in ferrite films
    Kazakov, GT
    Kozhevnikov, AV
    Filimonov, YA
    JOURNAL OF EXPERIMENTAL AND THEORETICAL PHYSICS, 1999, 88 (01) : 174 - 181
  • [40] Nonreciprocity engineering in magnetostatic spin waves
    Deorani, Praveen
    Kwon, Jae Hyun
    Yang, Hyunsoo
    CURRENT APPLIED PHYSICS, 2014, 14 : S129 - S135