Topological Characterization of Classical Waves: The Topological Origin of Magnetostatic Surface Spin Waves

被引:29
|
作者
Yamamoto, Kei [1 ,2 ]
Thiang, Guo Chuan [3 ]
Pirro, Philipp [4 ,5 ]
Kim, Kyoung-Whan [2 ,6 ]
Everschor-Sitte, Karin [2 ]
Saitoh, Eiji [1 ,7 ,8 ]
机构
[1] Japan Atom Energy Agcy, Adv Sci Res Ctr, Tokai, Ibaraki 3191195, Japan
[2] Johannes Gutenberg Univ Mainz, Inst Phys, D-55128 Mainz, Germany
[3] Univ Adelaide, Sch Math Sci, Adelaide, SA 5000, Australia
[4] Tech Univ Kaiserslautern, Fachbereich Phys, D-67663 Kaiserslautern, Germany
[5] Tech Univ Kaiserslautern, Landesforschungszentrum OPTIMAS, D-67663 Kaiserslautern, Germany
[6] Korea Inst Sci & Technol, Ctr Spintron, Seoul 02792, South Korea
[7] Univ Tokyo, Dept Appl Phys, Tokyo 1138656, Japan
[8] Tohoku Univ, Inst Mat Res, Sendai, Miyagi 9808577, Japan
基金
澳大利亚研究理事会;
关键词
BULK-EDGE CORRESPONDENCE; MODES;
D O I
10.1103/PhysRevLett.122.217201
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
We propose a topological characterization of Hamiltonians describing classical waves. Applying it to the magnetostatic surface spin waves that are important in spintronics applications, we settle the speculation over their topological origin. For a class of classical systems that includes spin waves driven by dipole-dipole interactions, we show that the topology is characterized by vortex lines in the Brillouin zone in such a way that the symplectic structure of Hamiltonian mechanics plays an essential role. We define winding numbers around these vortex lines and identify them to be the bulk topological invariants for a class of semimetals. Exploiting the bulk-edge correspondence appropriately reformulated for these classical waves, we predict that surface modes appear but not in a gap of the bulk frequency spectrum. This feature, consistent with the magnetostatic surface spin waves, indicates a broader realm of topological phases of matter beyond spectrally gapped ones.
引用
收藏
页数:5
相关论文
共 50 条
  • [1] TOPOLOGICAL EXCITATIONS, SPIN-WAVES AND THE ORIGIN OF MASS
    GOSWAMI, G
    INTERNATIONAL JOURNAL OF MODERN PHYSICS B, 1995, 9 (22): : 2937 - 2947
  • [2] Topological origin of equatorial waves
    Delplace, Pierre
    Marston, J. B.
    Venaille, Antoine
    SCIENCE, 2017, 358 (6366) : 1075 - 1077
  • [3] Topological Surface Acoustic Waves
    Zhang, Zi-Dong
    Yu, Si-Yuan
    Ge, Hao
    Wang, Ji-Qian
    Wang, Hong-Fei
    Liu, Kang-Fu
    Wu, Tao
    He, Cheng
    Lu, Ming-Hui
    Chen, Yan-Feng
    PHYSICAL REVIEW APPLIED, 2021, 16 (04)
  • [4] Topological non-Hermitian origin of surface Maxwell waves
    Konstantin Y. Bliokh
    Daniel Leykam
    Max Lein
    Franco Nori
    Nature Communications, 10
  • [5] Topological non-Hermitian origin of surface Maxwell waves
    Bliokh, Konstantin Y.
    Leykam, Daniel
    Lein, Max
    Nori, Franco
    NATURE COMMUNICATIONS, 2019, 10 (1)
  • [6] Topological spin-plasma waves
    Efimkin, Dmitry K.
    Kargarian, Mehdi
    PHYSICAL REVIEW B, 2021, 104 (07)
  • [7] Topological defects in spin density waves
    Kirova, N
    Brazovskii, S
    JOURNAL DE PHYSIQUE IV, 2000, 10 (P3): : 183 - 189
  • [8] SURFACE MAGNETOSTATIC MODES AND SURFACE SPIN WAVES
    ESHBACH, JR
    DAMON, RW
    PHYSICAL REVIEW, 1960, 118 (05): : 1208 - 1210
  • [9] Chiral and Topological Surface Waves and Line Waves on Metasurfaces
    Bisharat, D.
    Kandil, S.
    Kong, X.
    Singh, S.
    Xu, Z.
    Sievenpiper, D.
    2019 THIRTEENTH INTERNATIONAL CONGRESS ON ARTIFICIAL MATERIALS FOR NOVEL WAVE PHENOMENA (METAMATERIALS)), 2019, : 387 - 389
  • [10] Topological disclination states for surface acoustic waves
    Liang, Sheng-Nan
    Qin, Zhen-Hui
    Chen, Hua-Yang
    Sun, Xiao-Chen
    Xie, Jian-Lan
    Chen, Ze-Guo
    Yu, Si-Yuan
    He, Cheng
    Lu, Ming-Hui
    Chen, Yan-Feng
    PHYSICAL REVIEW B, 2022, 106 (17)