Quadratic spline collocation method and efficient preconditioner for the Helmholtz equation with the Sommerfeld boundary conditions

被引:3
|
作者
Luo, Wei-Hua [1 ,2 ]
Huang, Ting-Zhu [1 ]
Li, Liang [1 ]
Li, Hou-Biao [1 ]
Gu, Xian-Ming [1 ]
机构
[1] Univ Elect Sci & Technol China, Sch Math Sci, Chengdu 611731, Sichuan, Peoples R China
[2] Neijiang Normal Univ, Data Recovery Key Lab Sichuan Prov, Neijiang 641112, Sichuan, Peoples R China
关键词
Helmholtz equations; Sommerfeld boundary conditions; Quadratic spline collocation; Polynomial preconditioner; PARTIAL-DIFFERENTIAL EQUATIONS; ORDER;
D O I
10.1007/s13160-016-0225-9
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this paper, using the quadratic spline collocation method (QSC), we numerically solve the Helmholtz equations with the Sommerfeld boundary conditions. By reordering the unknowns, we obtain a 3 x 3 block linear system. Then, we introduce a two-step preconditioner based on the approximate inverse block polynomial preconditioner. Theoretical analysis show this preconditioner can largely gather the eigenvalues around 1. Numerical examples are presented to test the error of QSC method and check the efficiency of the presented preconditioner.
引用
收藏
页码:701 / 720
页数:20
相关论文
共 50 条
  • [31] A Robust Multilevel Preconditioner Based on a Domain Decomposition Method for the Helmholtz Equation
    Lu, Peipei
    Xu, Xuejun
    JOURNAL OF SCIENTIFIC COMPUTING, 2019, 81 (01) : 291 - 311
  • [32] BOUNDARY ELEMENT COLLOCATION METHOD FOR SOLVING THE EXTERIOR NEUMANN PROBLEM FOR HELMHOLTZ'S EQUATION IN THREE DIMENSIONS
    Kleefeld, Andreas
    Lin, Tzu-Chu
    ELECTRONIC TRANSACTIONS ON NUMERICAL ANALYSIS, 2012, 39 : 113 - 143
  • [33] A collocation method for the numerical solution of a two dimensional integral equation using a quadratic spline quasi-interpolant
    Chafik Allouch
    Paul Sablonnière
    Driss Sbibih
    Numerical Algorithms, 2013, 62 : 445 - 468
  • [34] A collocation method for the numerical solution of a two dimensional integral equation using a quadratic spline quasi-interpolant
    Allouch, Chafik
    Sablonniere, Paul
    Sbibih, Driss
    NUMERICAL ALGORITHMS, 2013, 62 (03) : 445 - 468
  • [35] VECTOR MODE ANALYSIS OF OPTICAL WAVEGUIDES BY QUADRATIC SPLINE COLLOCATION METHOD
    Mu, Jianwei
    Liang, Haibo
    Li, Xun
    Xu, Bin
    Huang, Weiping
    PROGRESS IN ELECTROMAGNETICS RESEARCH M, 2012, 27 : 97 - 107
  • [36] A meshless Chebyshev collocation method for eigenvalue problems of the Helmholtz equation
    Cao, Leilei
    Gu, Yan
    Zhang, Chuanzeng
    Qin, Qing-Hua
    ENGINEERING ANALYSIS WITH BOUNDARY ELEMENTS, 2021, 125 : 80 - 109
  • [37] A HIGH-ORDER NUMERICAL METHOD FOR THE HELMHOLTZ EQUATION WITH NONSTANDARD BOUNDARY CONDITIONS
    Britt, D. S.
    Tsynkov, S. V.
    Turkel, E.
    SIAM JOURNAL ON SCIENTIFIC COMPUTING, 2013, 35 (05): : A2255 - A2292
  • [38] Quadratic Spline Collocation and Parareal Deferred Correction Method for Parabolic PDEs
    Liu, Jun
    Wang, Yan
    Li, Rongjian
    PROCEEDINGS OF THE INTERNATIONAL CONFERENCE ON NUMERICAL ANALYSIS AND APPLIED MATHEMATICS 2015 (ICNAAM-2015), 2016, 1738
  • [39] Smoothing and Quadratic Spline Collocation Method for Weakly Singular Integral Equations
    Pallav, Rene
    Pedas, Arvet
    NUMERICAL ANALYSIS AND APPLIED MATHEMATICS, VOLS 1 AND 2, 2009, 1168 : 1288 - 1291
  • [40] Tensorial basis spline collocation method for Poisson's equation
    Plagne, L
    Berthou, JY
    JOURNAL OF COMPUTATIONAL PHYSICS, 2000, 157 (02) : 419 - 440