Numerics of acoustical 2D tomography based on the conservation laws

被引:10
|
作者
Kabanikhin, Sergey, I [1 ,2 ,3 ,4 ]
Klyuchinskiy, Dmitriy, V [1 ,3 ]
Novikov, Nikita S. [1 ,2 ,3 ]
Shishlenin, Maxim A. [1 ,2 ,3 ,4 ]
机构
[1] Math Ctr Akademgorodok, Pirogova St 2, Novosibirsk 630090, Russia
[2] Inst Computat Math & Math Geophys, Akad Lavrentieva 6, Novosibirsk 630090, Russia
[3] Novosibirsk State Univ, Pirogova St 2, Novosibirsk 630090, Russia
[4] Sobolev Inst Math, Akad Koptyug Ave 4, Novosibirsk 630090, Russia
来源
基金
俄罗斯科学基金会;
关键词
Acoustics; conservation laws; coefficient inverse problem; optimization method; Godunov scheme; ULTRASOUND TOMOGRAPHY; INVERSE PROBLEM; SPATIAL DISTRIBUTIONS; SOUND-VELOCITY; RECONSTRUCTION; ABSORPTION; SIMULATION; WAVES; MODEL;
D O I
10.1515/jiip-2019-0061
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We investigate the mathematical modeling of the 2D acoustic waves propagation, based on the conservation laws. The hyperbolic first-order system of partial differential equations is considered and solved by the method of S. K. Godunov. The inverse problem of reconstructing the density and the speed of sound of the medium is considered. We apply the gradient method to reconstruct the parameters of the medium. The gradient of the functional is obtained. Numerical results are presented.
引用
收藏
页码:287 / 297
页数:11
相关论文
共 50 条
  • [21] Truncated Levey laws and 2D turbulence
    Dubrulle, B
    Laval, JP
    EUROPEAN PHYSICAL JOURNAL B, 1998, 4 (02): : 143 - 146
  • [22] An Asymptotic-Preserving Scheme for Systems of Conservation Laws with Source Terms on 2D Unstructured Meshes
    Berthon, C.
    Moebs, G.
    Turpault, R.
    FINITE VOLUMES FOR COMPLEX APPLICATIONS VII - METHODS AND THEORETICAL ASPECTS, 2014, 77 : 107 - 115
  • [23] A note on admissible solutions of 1D scalar conservation laws and 2D Hamilton-Jacobi equations
    Ambrosio, L
    De Lellis, C
    JOURNAL OF HYPERBOLIC DIFFERENTIAL EQUATIONS, 2004, 1 (04) : 813 - 826
  • [24] A new class of uniformly second order accurate difference schemes for 2D scalar conservation laws
    Cheng, J
    Dai, JZ
    JOURNAL OF COMPUTATIONAL MATHEMATICS, 1997, 15 (04) : 311 - 318
  • [25] AN ASYMPTOTIC-PRESERVING SCHEME FOR SYSTEMS OF CONSERVATION LAWS WITH SOURCE TERMS ON 2D UNSTRUCTURED MESHES
    Berthon, Christophe
    Moebs, Guy
    Sarazin-Desbois, Celine
    Turpault, Rodolphe
    COMMUNICATIONS IN APPLIED MATHEMATICS AND COMPUTATIONAL SCIENCE, 2016, 11 (01) : 55 - 77
  • [26] A Comparison of Beamforming Algorithms for Underwater 2D Acoustical Imaging
    Madhusoodanan, Midhila
    Panicker, Mahesh Raveendranatha
    Menakath, Mimisha M.
    OCEANS 2024 - SINGAPORE, 2024,
  • [27] Piezoelectric sectorial 2D array for 3D acoustical imaging
    Akhnak, M
    Martínez, O
    Gomez-Ullate, L
    de Espinosa, FM
    SENSORS AND ACTUATORS A-PHYSICAL, 2000, 85 (1-3) : 60 - 64
  • [28] An Adversarial Learning Based Approach for 2D Unknown View Tomography
    Zehni, Mona
    Zhao, Zhizhen
    IEEE TRANSACTIONS ON COMPUTATIONAL IMAGING, 2022, 8 : 705 - 720
  • [29] Symmetry solutions and conservation laws of a new generalized 2D Bogoyavlensky-Konopelchenko equation of plasma physics
    Khalique, Chaudry Masood
    Adeyemo, Oke Davies
    Maefo, Kentse
    AIMS MATHEMATICS, 2022, 7 (06): : 9767 - 9788
  • [30] 2D tomography with bolometry in DIII-D
    Leonard, A.W.
    Meyer, W.H.
    Geer, B.
    Behne, D.M.
    Hill, D.N.
    Review of Scientific Instruments, 1995, 66 (1 pt 2):