Numerics of acoustical 2D tomography based on the conservation laws

被引:10
|
作者
Kabanikhin, Sergey, I [1 ,2 ,3 ,4 ]
Klyuchinskiy, Dmitriy, V [1 ,3 ]
Novikov, Nikita S. [1 ,2 ,3 ]
Shishlenin, Maxim A. [1 ,2 ,3 ,4 ]
机构
[1] Math Ctr Akademgorodok, Pirogova St 2, Novosibirsk 630090, Russia
[2] Inst Computat Math & Math Geophys, Akad Lavrentieva 6, Novosibirsk 630090, Russia
[3] Novosibirsk State Univ, Pirogova St 2, Novosibirsk 630090, Russia
[4] Sobolev Inst Math, Akad Koptyug Ave 4, Novosibirsk 630090, Russia
来源
基金
俄罗斯科学基金会;
关键词
Acoustics; conservation laws; coefficient inverse problem; optimization method; Godunov scheme; ULTRASOUND TOMOGRAPHY; INVERSE PROBLEM; SPATIAL DISTRIBUTIONS; SOUND-VELOCITY; RECONSTRUCTION; ABSORPTION; SIMULATION; WAVES; MODEL;
D O I
10.1515/jiip-2019-0061
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We investigate the mathematical modeling of the 2D acoustic waves propagation, based on the conservation laws. The hyperbolic first-order system of partial differential equations is considered and solved by the method of S. K. Godunov. The inverse problem of reconstructing the density and the speed of sound of the medium is considered. We apply the gradient method to reconstruct the parameters of the medium. The gradient of the functional is obtained. Numerical results are presented.
引用
收藏
页码:287 / 297
页数:11
相关论文
共 50 条
  • [1] Compensated compactness for 2D conservation laws
    Tadmor, E
    Rascle, M
    Bagnerini, P
    JOURNAL OF HYPERBOLIC DIFFERENTIAL EQUATIONS, 2005, 2 (03) : 697 - 712
  • [2] CONTROL OF 2D SCALAR CONSERVATION LAWS IN THE PRESENCE OF SHOCKS
    Lecaros, Rodrigo
    Zuazua, Enrique
    MATHEMATICS OF COMPUTATION, 2016, 85 (299) : 1183 - 1224
  • [3] A Parallel Splitting Wavelet Method for 2D Conservation Laws
    Schmidt, Alex A.
    Kozakevicius, Alice J.
    Jakobsson, Stefan
    PROCEEDINGS OF THE INTERNATIONAL CONFERENCE ON NUMERICAL ANALYSIS AND APPLIED MATHEMATICS 2015 (ICNAAM-2015), 2016, 1738
  • [4] Splitting Wavelet Method for Solving 2D Conservation Laws
    Kozakevicius, Alice de Jesus
    Schmidt, Alex A.
    NUMERICAL ANALYSIS AND APPLIED MATHEMATICS, VOLS 1 AND 2, 2009, 1168 : 1158 - 1161
  • [5] A third order central WENO scheme for 2D conservation laws
    Levy, D
    Puppo, G
    Russo, G
    APPLIED NUMERICAL MATHEMATICS, 2000, 33 (1-4) : 415 - 421
  • [6] On variational formulations and conservation laws for incompressible 2D Euler fluids
    Camassa, R.
    Falqui, G.
    Ortenzi, G.
    Pedroni, M.
    PHYSICS AND MATHEMATICS OF NONLINEAR PHENOMENA 2013 (PMNP2013), 2014, 482
  • [7] ON THE ACCURACY OF STABLE SCHEMES FOR 2D SCALAR CONSERVATION-LAWS
    GOODMAN, JB
    LEVEQUE, RJ
    MATHEMATICS OF COMPUTATION, 1985, 45 (171) : 15 - 21
  • [8] A parallel wavelet adaptive WENO scheme for 2D conservation laws
    Schmidt, Alex A.
    Kozakevicius, Alice de Jesus
    Jakobsson, Stefan
    INTERNATIONAL JOURNAL OF NUMERICAL METHODS FOR HEAT & FLUID FLOW, 2017, 27 (07) : 1467 - 1486
  • [9] A modified structured central scheme for 2D hyperbolic conservation laws
    Katsaounis, T
    Levy, D
    APPLIED MATHEMATICS LETTERS, 1999, 12 (06) : 89 - 96
  • [10] 2D magnetofluid models constructed by a priori imposition of conservation laws
    Kaltsas, D. A.
    Throumoulopoulos, G. N.
    PHYSICS LETTERS A, 2019, 383 (10) : 1031 - 1036