Information complexity-based regularization parameter selection for solution of ill conditioned inverse problems

被引:8
|
作者
Urmanov, AM [1 ]
Gribok, AV
Bozdogan, H
Hines, JW
Uhrig, RE
机构
[1] Univ Tennessee, Nucl Engn Dept, Knoxville, TN 37996 USA
[2] Univ Tennessee, Stat Dept, Knoxville, TN 37996 USA
关键词
D O I
10.1088/0266-5611/18/2/101
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We propose an information complexity-based regularization parameter selection method for solution of ill conditioned inverse problems. The regularization parameter is selected to be the minimizer of the Kullback-Leibler (KL) distance between the unknown data-generating distribution and the fitted distribution. The KL distance is approximated by an information complexity criterion developed by Bozdogan. The method is not limited to the white Gaussian noise case. It can be extended to correlated and non-Gaussian noise. It can also account for possible model misspecification. We demonstrate the performance of the proposed method on a test problem from Hansen's regularization tools.
引用
收藏
页码:L1 / L9
页数:9
相关论文
共 50 条
  • [32] Multi-parameter regularization techniques for ill-conditioned linear systems
    Brezinski, C
    Redivo-Zaglia, M
    Rodriguez, G
    Seatzu, S
    NUMERISCHE MATHEMATIK, 2003, 94 (02) : 203 - 228
  • [33] Ill-posed MEG inverse solution based on deterministic regularization theory framework
    Ye, S
    Hu, J
    PROCEEDINGS OF THE 2005 INTERNATIONAL CONFERENCE ON NEURAL NETWORKS AND BRAIN, VOLS 1-3, 2005, : 144 - 146
  • [34] Regularization parameter design for the nonlinear control of an ill-conditioned thermal process
    Gwak, KW
    Masada, GY
    PROCEEDINGS OF THE 41ST IEEE CONFERENCE ON DECISION AND CONTROL, VOLS 1-4, 2002, : 2492 - 2493
  • [35] Multi-parameter regularization techniques for ill-conditioned linear systems
    C. Brezinski
    M. Redivo-Zaglia
    G. Rodriguez
    S. Seatzu
    Numerische Mathematik, 2003, 94 : 203 - 228
  • [36] An Approximate Direct Inverse as a Preconditioner for Ill-conditioned Problems
    Lee, Chung Hyun
    Lee, Jin-Fa
    Langston, William L.
    Zinser, Brian
    Dang, Vinh Q.
    Huang, Andy
    Campione, Salvatore
    2020 IEEE INTERNATIONAL SYMPOSIUM ON ANTENNAS AND PROPAGATION AND NORTH AMERICAN RADIO SCIENCE MEETING, 2020, : 1041 - 1042
  • [37] Limits to estimation in stochastic ill-conditioned inverse problems
    Solo, V
    IEEE TRANSACTIONS ON INFORMATION THEORY, 2000, 46 (05) : 1872 - 1880
  • [38] Regularization parameter determination for discrete ill-posed problems
    Hochstenbach, M. E.
    Reichel, L.
    Rodriguez, G.
    JOURNAL OF COMPUTATIONAL AND APPLIED MATHEMATICS, 2015, 273 : 132 - 149
  • [39] Automating Regularization Parameter Selection of the Inverse Problem in Ultrasound Tomography
    Carevic, Anita
    Slapnicar, Ivan
    Almekkawy, Mohamed
    2022 IEEE INTERNATIONAL ULTRASONICS SYMPOSIUM (IEEE IUS), 2022,
  • [40] A Newton root-finding algorithm for estimating the regularization parameter for solving ill-conditioned least squares problems
    Mead, Jodi L.
    Renaut, Rosemary A.
    INVERSE PROBLEMS, 2009, 25 (02)