Variational Integrators in Holonomic Mechanics

被引:7
|
作者
Man, Shumin [1 ]
Gao, Qiang [1 ]
Zhong, Wanxie [1 ]
机构
[1] Dalian Univ Technol, Fac Vehicle Engn & Mech, Dept Engn Mech, State Key Lab Struct Anal Ind Equipment, Dalian 116023, Peoples R China
基金
中国国家自然科学基金;
关键词
holonomic constraints; variational integrator; Hamilton's principle; discrete mechanics; MOLECULAR-DYNAMICS; ALGORITHM; EQUATIONS; SYSTEMS; VERSION;
D O I
10.3390/math8081358
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Variational integrators for dynamic systems with holonomic constraints are proposed based on Hamilton's principle. The variational principle is discretized by approximating the generalized coordinates and Lagrange multipliers by Lagrange polynomials, by approximating the integrals by quadrature rules. Meanwhile, constraint points are defined in order to discrete the holonomic constraints. The functional of the variational principle is divided into two parts, i.e., the action of the unconstrained term and the constrained term and the actions of the unconstrained term and the constrained term are integrated separately using different numerical quadrature rules. The influence of interpolation points, quadrature rule and constraint points on the accuracy of the algorithms is analyzed exhaustively. Properties of the proposed algorithms are investigated using examples. Numerical results show that the proposed algorithms have arbitrary high order, satisfy the holonomic constraints with high precision and provide good performance for long-time integration.
引用
收藏
页数:19
相关论文
共 50 条
  • [1] Variational integrators in nonholonomic and vakonomic mechanics
    Manuel de León
    Pedro L. García
    Revista de la Real Academia de Ciencias Exactas, Fisicas y Naturales. Serie A. Matematicas, 2012, 106 : 47 - 48
  • [2] Variational integrators in discrete vakonomic mechanics
    Pedro L. García
    Antonio Fernández
    César Rodrigo
    Revista de la Real Academia de Ciencias Exactas, Fisicas y Naturales. Serie A. Matematicas, 2012, 106 : 137 - 159
  • [3] Variational integrators in discrete vakonomic mechanics
    Garcia, Pedro L.
    Fernandez, Antonio
    Rodrigo, Cesar
    REVISTA DE LA REAL ACADEMIA DE CIENCIAS EXACTAS FISICAS Y NATURALES SERIE A-MATEMATICAS, 2012, 106 (01) : 137 - 159
  • [4] Variational integrators in nonholonomic and vakonomic mechanics
    de Leon, Manuel
    Garcia, Pedro L.
    REVISTA DE LA REAL ACADEMIA DE CIENCIAS EXACTAS FISICAS Y NATURALES SERIE A-MATEMATICAS, 2012, 106 (01) : 47 - 48
  • [5] Exponential variational integrators for the dynamics of multibody systems with holonomic constraints
    Kosmas, Odysseas
    8TH INTERNATIONAL CONFERENCE ON MATHEMATICAL MODELING IN PHYSICAL SCIENCE, 2019, 1391
  • [6] Dangers of Two-point Holonomic Constraints for Variational Integrators
    Johnson, Elliot R.
    Murphey, Todd D.
    2009 AMERICAN CONTROL CONFERENCE, VOLS 1-9, 2009, : 4723 - 4728
  • [7] Nonsmooth Lagrangian mechanics and variational collision integrators
    Fetecau, RC
    Marsden, JE
    Ortiz, M
    West, M
    SIAM JOURNAL ON APPLIED DYNAMICAL SYSTEMS, 2003, 2 (03): : 381 - 416
  • [8] Discrete Hamiltonian Variational Mechanics and Hamel’s Integrators
    Shan Gao
    Donghua Shi
    Dmitry V. Zenkov
    Journal of Nonlinear Science, 2023, 33
  • [9] Fractional variational integrators for fractional Euler-Lagrange equations with holonomic constraints
    Wang, Dongling
    Xiao, Aiguo
    COMMUNICATIONS IN NONLINEAR SCIENCE AND NUMERICAL SIMULATION, 2013, 18 (04) : 905 - 914
  • [10] Construction and analysis of higher order variational integrators for dynamical systems with holonomic constraints
    Theresa Wenger
    Sina Ober-Blöbaum
    Sigrid Leyendecker
    Advances in Computational Mathematics, 2017, 43 : 1163 - 1195