Compactly supported multiwindow dual Gabor frames of rational sampling density

被引:4
|
作者
Jang, Sumi [1 ]
Jeong, Byeongseon [2 ]
Kim, Hong Oh [2 ]
机构
[1] Ewha Womans Univ, Inst Math Sci, Seoul 120750, South Korea
[2] Korea Adv Inst Sci & Technol, Dept Math Sci, Taejon 305701, South Korea
基金
新加坡国家研究基金会;
关键词
Gabor system; Dual frame; Tight frame; Rational sampling; Zak transform; Zibulski-Zeevi condition; Janssen condition; Unitary extension principle; SPACE; BASES;
D O I
10.1007/s10444-011-9234-z
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We consider multiwindow Gabor systems (G (N) ; a, b) with N compactly supported windows and rational sampling density N/ab. We give another set of necessary and sufficient conditions for two multiwindow Gabor systems to form a pair of dual frames in addition to the Zibulski-Zeevi and Janssen conditions. Our conditions come from the back transform of Zibulski-Zeevi condition to the time domain but are more informative to construct window functions. For example, the masks satisfying unitary extension principle (UEP) condition generate a tight Gabor system when restricted on [0, 2] with a = 1 and b = 1. As another application, we show that a multiwindow Gabor system (G (N) ; 1, 1) forms an orthonormal basis if and only if it has only one window (N = 1) which is a sum of characteristic functions whose supports 'essentially' form a Lebesgue measurable partition of the unit interval. Our criteria also provide a rich family of multiwindow dual Gabor frames and multiwindow tight Gabor frames for the particular choices of lattice parameters, number and support of the windows. (Section 4).
引用
收藏
页码:159 / 186
页数:28
相关论文
共 50 条
  • [11] Discrete Subspace Multiwindow Gabor Frames and Their Duals
    Li, Yun-Zhang
    Zhang, Yan
    ABSTRACT AND APPLIED ANALYSIS, 2013,
  • [12] Gabor windows supported on [-1,1] and compactly supported dual windows
    Christensen, Ole
    Kim, Hong Oh
    Kim, Rae Young
    APPLIED AND COMPUTATIONAL HARMONIC ANALYSIS, 2010, 28 (01) : 89 - 103
  • [13] A Geometric Construction of Tight Multivariate Gabor Frames with Compactly Supported Smooth Windows
    Pfander, Goetz E.
    Rashkov, Peter
    Wang, Yang
    JOURNAL OF FOURIER ANALYSIS AND APPLICATIONS, 2012, 18 (02) : 223 - 239
  • [14] A Geometric Construction of Tight Multivariate Gabor Frames with Compactly Supported Smooth Windows
    Götz E. Pfander
    Peter Rashkov
    Yang Wang
    Journal of Fourier Analysis and Applications, 2012, 18 : 223 - 239
  • [15] Compactly supported multivariate pairs of dual wavelet frames obtained by convolution
    Ehler, Martin
    INTERNATIONAL JOURNAL OF WAVELETS MULTIRESOLUTION AND INFORMATION PROCESSING, 2008, 6 (02) : 183 - 208
  • [16] Gabor frames for rational functions
    Belov, Yurii
    Kulikov, Aleksei
    Lyubarskii, Yurii
    INVENTIONES MATHEMATICAE, 2023, 231 (02) : 431 - 466
  • [17] Construction of Compactly Supported Shearlet Frames
    Kittipoom, Pisamai
    Kutyniok, Gitta
    Lim, Wang-Q
    CONSTRUCTIVE APPROXIMATION, 2012, 35 (01) : 21 - 72
  • [18] Construction of Compactly Supported Shearlet Frames
    Pisamai Kittipoom
    Gitta Kutyniok
    Wang-Q Lim
    Constructive Approximation, 2012, 35 : 21 - 72
  • [19] Compactly Supported Frames for Decomposition Spaces
    Nielsen, Morten
    Rasmussen, Kenneth N.
    JOURNAL OF FOURIER ANALYSIS AND APPLICATIONS, 2012, 18 (01) : 87 - 117
  • [20] Compactly Supported Frames for Decomposition Spaces
    Morten Nielsen
    Kenneth N. Rasmussen
    Journal of Fourier Analysis and Applications, 2012, 18 : 87 - 117