Quantization of the one-dimensional free particle motion with dissipation

被引:5
|
作者
López, G
Murguía, M
Sosa, M
机构
[1] Univ Guadalajara, Dept Fis, Guadalajara 44410, Jalisco, Mexico
[2] Univ Guanajuato, Inst Fis, Leon 37150, Guanajuato, Mexico
来源
MODERN PHYSICS LETTERS B | 2001年 / 15卷 / 22期
关键词
D O I
10.1142/S0217984901002750
中图分类号
O59 [应用物理学];
学科分类号
摘要
Using Schrodinger's quantization method, the Hamiltonian of a particle moving in a one-dimensional dissipative medium is quantized in a box of length L and at first order on dissipation strength. Expressions for <q >, <p > and \ psi \ (2) are obtained in terms of the dissipation parameter. A treatment for the case of free particle motion with friction is presented.
引用
收藏
页码:965 / 971
页数:7
相关论文
共 50 条
  • [41] A NOTE ON ONE-DIMENSIONAL PLASMA MOTION
    GROSS, RA
    JOURNAL OF THE AEROSPACE SCIENCES, 1958, 25 (12): : 788 - 789
  • [42] On the Motion of One-Dimensional Double Pendulum
    Burian, S. N.
    Kalnitsky, V. S.
    EIGHTH POLYAKHOV'S READING, 2018, 1959
  • [43] Quantization scheme for arbitrary one-dimensional potential wells
    Cao, ZQ
    Liu, QN
    Shen, QS
    Dou, XM
    Chen, YG
    Ozaki, Y
    PHYSICAL REVIEW A, 2001, 63 (05): : 541031 - 541034
  • [44] ANALOG STOCHASTIC QUANTIZATION FOR A ONE-DIMENSIONAL BINARY ALLOY
    STOCKS, NG
    LAMBERT, CJ
    MANNELLA, R
    MCCLINTOCK, PVE
    PHYSICAL REVIEW B, 1993, 47 (14): : 8580 - 8587
  • [45] On the Quantization of One-Dimensional Nonstationary Coulomb Potential System
    Menouar, Salah
    Maamache, Mustapha
    Choi, Jeong Ryeol
    Sever, Ramazan
    JOURNAL OF THE PHYSICAL SOCIETY OF JAPAN, 2012, 81 (06)
  • [46] MINIMUM-DISTORTION FUNCTIONAL FOR ONE-DIMENSIONAL QUANTIZATION
    POOR, HV
    ELECTRONICS LETTERS, 1980, 16 (01) : 23 - 25
  • [47] PARTICLE IN THE ONE-DIMENSIONAL CHAMPAGNE BOTTLE
    MILLER, GR
    JOURNAL OF CHEMICAL EDUCATION, 1979, 56 (11) : 709 - 710
  • [48] Quantization of the potential amplitude in the one-dimensional Schrodinger equation
    Balagurov, BY
    JOURNAL OF EXPERIMENTAL AND THEORETICAL PHYSICS, 2004, 99 (04) : 856 - 874
  • [49] Quantum Particle Model of Free Particle Solution in One-Dimensional Klein-Gordon Equation
    Prayitno, Teguh Budi
    8TH NATIONAL PHYSICS SEMINAR 2019, 2019, 2169
  • [50] Slow decay for one-dimensional porous dissipation elasticity
    Quintanilla, R
    APPLIED MATHEMATICS LETTERS, 2003, 16 (04) : 487 - 491