Applications of Cas9 as an RNA-programmed RNA-binding protein

被引:31
|
作者
Nelles, David A. [1 ,2 ]
Fang, Mark Y. [1 ,2 ]
Aigner, Stefan [1 ,2 ]
Yeo, Gene W. [1 ,2 ,3 ,4 ]
机构
[1] Univ Calif San Diego, Stem Cell Program, Dept Cellular & Mol Med, La Jolla, CA 92093 USA
[2] Univ Calif San Diego, Inst Genom Med, La Jolla, CA 92093 USA
[3] Natl Univ Singapore, Mol Engn Lab, Inst Biomed Sci, Agcy Sci Technol & Res, Singapore 117548, Singapore
[4] Natl Univ Singapore, Yong Loo Lin Sch Med, Singapore 117595, Singapore
关键词
Cas9; CRISPR-Cas; RCas9; RNA-binding proteins; RNA biology; RNA targeting; HEXANUCLEOTIDE REPEAT; EXPRESSION; CRISPR; LOCALIZATION; DYNAMICS; VISUALIZATION; RECOGNITION; CLEAVAGE; REVEALS; DOMAINS;
D O I
10.1002/bies.201500001
中图分类号
Q5 [生物化学]; Q7 [分子生物学];
学科分类号
071010 ; 081704 ;
摘要
The Streptococcus pyogenes CRISPR-Cas system has gained widespread application as a genome editing and gene regulation tool as simultaneous cellular delivery of the Cas9 protein and guide RNA senables recognition of specific DNA sequences. The recent discovery that Cas9 can also bind and cleave RNA in an RNA-programmable manner indicates the potential utility of this system as a universal nucleic acid-recognition technology. RNA-targeted Cas9 (RCas9) could allow identification and manipulation of RNA substrates in live cells, empowering the study of cellular gene expression, and could ultimately spawn patient-and disease-specific diagnostic and therapeutic tools. Here we describe the development of RCas9 and compare it to previous methods for RNA targeting, including engineered RNA-binding proteins and other types of CRISPR-Cas systems. We discuss potential uses ranging from live imaging of transcriptional dynamics to patient-specific therapies and applications in synthetic biology.
引用
收藏
页码:732 / 739
页数:8
相关论文
共 50 条
  • [31] Challenges of CRISPR/Cas9 applications for long non-coding RNA genes
    Goyal, Ashish
    Myacheva, Ksenia
    Gross, Matthias
    Klingenberg, Marcel
    Arque, Berta Duran
    Diederichs, Sven
    NUCLEIC ACIDS RESEARCH, 2017, 45 (03) : e12
  • [32] Molecular bases of viral RNA targeting by viral small interfering RNA-programmed RISC
    Pantaleo, Vitantonio
    Szittya, Gyorgy
    Burgyan, Jozsef
    JOURNAL OF VIROLOGY, 2007, 81 (08) : 3797 - 3806
  • [33] Elimination of Toxic Microsatellite Repeat Expansion RNA by RNA-Targeting Cas9
    Batra, Ranjan
    Nelles, David A.
    Pirie, Elaine
    Blue, Steven M.
    Marina, Ryan J.
    Wang, Harrison
    Chaim, Isaac A.
    Thomas, James D.
    Zhang, Nigel
    Nguyen, Vu
    Aigner, Stefan
    Markmiller, Sebastian
    Xia, Guangbin
    Corbett, Kevin D.
    Swanson, Maurice S.
    Yeo, Gene W.
    CELL, 2017, 170 (05) : 899 - +
  • [34] Maximizing Output in RNA-Programmed Peptidyl-Transfer Reactions
    Di Pisa, Margherita
    Hauser, Anett
    Seitz, Oliver
    CHEMBIOCHEM, 2017, 18 (09) : 872 - 879
  • [35] RNA-PROGRAMMED PEPTIDYL TRANSFER FOR THE CONDITIONAL SYNTHESIS OF CYTOTOXIC AGENTS
    Vazquez, O.
    Seitz, O.
    JOURNAL OF PEPTIDE SCIENCE, 2014, 20 : S33 - S34
  • [37] RNA structure inhibits the TRAP (trp RNA-binding attenuation protein) RNA interaction
    Xirasagar, S
    Elliott, MB
    Bartolini, W
    Gollnick, P
    Gottlieb, PA
    JOURNAL OF BIOLOGICAL CHEMISTRY, 1998, 273 (42) : 27146 - 27153
  • [38] Emerging roles of RNA and RNA-binding protein network in cancer cells
    Kim, Mee Young
    Hur, Jung
    Jeong, Sunjoo
    BMB REPORTS, 2009, 42 (03) : 125 - 130
  • [39] Prediction of RNA-binding amino acids from protein and RNA sequences
    Choi, Sungwook
    Han, Kyungsook
    BMC BIOINFORMATICS, 2011, 12
  • [40] Theoretical studies on RNA recognition by Musashi 1 RNA-binding protein
    Nitchakan Darai
    Panupong Mahalapbutr
    Peter Wolschann
    Vannajan Sanghiran Lee
    Michael T. Wolfinger
    Thanyada Rungrotmongkol
    Scientific Reports, 12