On the Green function of the almost-Mathieu operator

被引:2
|
作者
Chmela, FG [1 ]
Obermair, GM [1 ]
机构
[1] Univ Regensburg, D-93040 Regensburg, Germany
来源
关键词
D O I
10.1088/0305-4470/35/10/309
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
The square tight-binding model in a magnetic field leads to the almost-Mathieu operator, which, for rational fields, reduces to a q x q matrix depending on the components mu, nu of the wavevector in the magnetic Brillouin zone. We calculate the corresponding Green function without explicit knowledge of eigenvalues and eigenfunctions and obtain analytical expressions for the diagonal and the first off-diagonal elements; the results which are consistent with the zero-magnetic-field case can be used to calculate several quantities of physical interest (e.g. the density of states over the entire spectrum, impurity levels in a magnetic field).
引用
收藏
页码:2449 / 2455
页数:7
相关论文
共 50 条
  • [21] Anderson localization for the almost Mathieu operator in the exponential regime
    Liu, Wencai
    Yuan, Xiaoping
    JOURNAL OF SPECTRAL THEORY, 2015, 5 (01) : 89 - 112
  • [22] Zero Hausdorff Dimension Spectrum for the Almost Mathieu Operator
    Yoram Last
    Mira Shamis
    Communications in Mathematical Physics, 2016, 348 : 729 - 750
  • [23] Dynamical localization II with an application to the almost Mathieu operator
    Germinet, F
    JOURNAL OF STATISTICAL PHYSICS, 1999, 95 (1-2) : 273 - 286
  • [24] Dynamical Localization II with an Application to the Almost Mathieu Operator
    François Germinet
    Journal of Statistical Physics, 1999, 95 : 273 - 286
  • [25] Metal-insulator transition for the almost Mathieu operator
    Jitomirskaya, SY
    ANNALS OF MATHEMATICS, 1999, 150 (03) : 1159 - 1175
  • [26] Exact dynamical decay rate for the almost Mathieu operator
    Jitomirskaya, Svetlana
    Kruger, Helge
    Liu, Wencai
    MATHEMATICAL RESEARCH LETTERS, 2020, 27 (03) : 789 - 808
  • [27] Zero Hausdorff Dimension Spectrum for the Almost Mathieu Operator
    Last, Yoram
    Shamis, Mira
    COMMUNICATIONS IN MATHEMATICAL PHYSICS, 2016, 348 (03) : 729 - 750
  • [28] Hofstadter point spectrum trace and the almost Mathieu operator
    Ouvry, Stephane
    Wagner, Stephan
    Wu, Shuang
    JOURNAL OF MATHEMATICAL PHYSICS, 2018, 59 (07)
  • [29] Positive Hausdorff Dimensional Spectrum for the Critical Almost Mathieu Operator
    Bernard Helffer
    Qinghui Liu
    Yanhui Qu
    Qi Zhou
    Communications in Mathematical Physics, 2019, 368 : 369 - 382
  • [30] Positive Hausdorff Dimensional Spectrum for the Critical Almost Mathieu Operator
    Helffer, Bernard
    Liu, Qinghui
    Qu, Yanhui
    Zhou, Qi
    COMMUNICATIONS IN MATHEMATICAL PHYSICS, 2019, 368 (01) : 369 - 382