Green-Naghdi equations;
bifurcation theory of dynamical systems;
bifurcation curves;
solitary waves;
periodic waves;
LINEAR-STABILITY;
SOLITARY WAVES;
WATER;
DEPTH;
D O I:
10.3906/mat-1203-8
中图分类号:
O1 [数学];
学科分类号:
0701 ;
070101 ;
摘要:
By using the bifurcation theory of dynamical systems to study the dynamical behavior of the Green-Naghdi equations, the existence of solitary wave solutions along with smooth periodic traveling wave solutions is obtained. Under different regions of parametric spaces, various sufficient conditions to guarantee the existence of the above solutions are given. Some exact and explicit parametric representations of traveling wave solutions are constructed.
机构:
Department of Mathematical Sciences, Stevens Institute of Technology, Hoboken, 07030, NJDepartment of Mathematical Sciences, Stevens Institute of Technology, Hoboken, 07030, NJ
机构:
Zhejiang Normal Univ, Dept Math, Jinhua 321004, Peoples R China
Kunming Univ Sci & Technol, Kunming 200062, Peoples R ChinaZhejiang Normal Univ, Dept Math, Jinhua 321004, Peoples R China
Li, Jibin
Zhang, Yi
论文数: 0引用数: 0
h-index: 0
机构:
Zhejiang Normal Univ, Dept Math, Jinhua 321004, Peoples R ChinaZhejiang Normal Univ, Dept Math, Jinhua 321004, Peoples R China
机构:
Inst Math Toulouse, F-31062 Toulouse 9, France
Univ Toulouse, UMR5219, F-31062 Toulouse 9, France
UPS IMT, CNRS, F-31062 Toulouse 9, FranceInst Math Toulouse, F-31062 Toulouse 9, France
Kazakova, Maria
Noble, Pascal
论文数: 0引用数: 0
h-index: 0
机构:
Inst Math Toulouse, F-31077 Toulouse, France
Univ Toulouse, UMR5219, F-31077 Toulouse, France
CNRS, INSA, F-31077 Toulouse, FranceInst Math Toulouse, F-31062 Toulouse 9, France