Homogenization theory for periodic distributions of elastic cylinders embedded in a viscous fluid

被引:15
|
作者
Reyes-Ayona, Edgar [1 ]
Torrent, Daniel [1 ]
Sanchez-Dehesa, Jose [1 ]
机构
[1] Univ Politecn Valencia, Grp Fenomenos Ondulatorios, ES-46022 Valencia, Spain
来源
关键词
acoustic wave scattering; acoustic wave velocity; brass; numerical analysis; organic compounds; reliability; shapes (structures); viscosity; ACOUSTIC BAND-GAPS; MULTIPLE-SCATTERING; COMPOSITES; ATTENUATION; EXISTENCE; CRYSTALS; WAVES; MEDIA; SOUND;
D O I
10.1121/1.4744933
中图分类号
O42 [声学];
学科分类号
070206 ; 082403 ;
摘要
A multiple-scattering theory is applied to study the homogenization of clusters of elastic cylinders distributed in a isotropic lattice and embedded in a viscous fluid. Asymptotic relations are derived and employed to obtain analytical formulas for the effective parameters of homogenized clusters in which the underlying lattice has a low filling fraction. It is concluded that such clusters behave, in the low frequency limit, as an effective elastic medium. Particularly, it is found that the effective dynamical mass density follows the static estimate; i.e., the homogenization procedure does not recover the non-linear behavior obtained for the inviscid case. Moreover, the longitudinal and transversal sound speeds do not show any dependence on fluid viscosity. Numerical simulations performed for clusters made of brass cylinders embedded in glycerin support the reliability of the effective parameters resulting from the homogenization procedure reported here. (C) 2012 Acoustical Society of America. [http://dx.doi.org/10.1121/1.4744933]
引用
收藏
页码:2896 / 2908
页数:13
相关论文
共 50 条
  • [31] Elastic waves in periodic and non-periodic sets of hollow cylinders
    Nikitov, S. A.
    Gulyaev, Yu. V.
    Lisenkov, I. V.
    Popov, R. S.
    Grigorievkii, A. V.
    Grigorievkii, V. I.
    NONLINEAR ACOUSTICS FUNDAMENTALS AND APPLICATIONS, 2008, 1022 : 287 - 290
  • [32] On infinitesimal stability and homogenization of linearly elastic periodic composites
    Baranski, W
    MATHEMATICAL MODELS & METHODS IN APPLIED SCIENCES, 2000, 10 (08): : 1251 - 1262
  • [33] HOMOGENIZATION OF PERIODIC GRAPH-BASED ELASTIC STRUCTURES
    Abdoul-Anziz, Houssam
    Seppecher, Pierre
    JOURNAL DE L ECOLE POLYTECHNIQUE-MATHEMATIQUES, 2018, 5 : 259 - 288
  • [34] EFFECTIVE MEDIUM PROPERTIES OF PERIODIC ELASTIC LAYERS BY HOMOGENIZATION
    Liu, Ying-Hong
    Chang, Chien C.
    Kuo, Chih-Yu
    OMAE 2009, VOL 6, 2009, : 511 - 521
  • [35] The application of non-periodic homogenization of elastic equation
    Zhang LingYun
    Sun HePing
    Xu JianQiao
    CHINESE JOURNAL OF GEOPHYSICS-CHINESE EDITION, 2020, 63 (01): : 131 - 140
  • [36] A DUAL METHOD IN HOMOGENIZATION - APPLICATION TO ELASTIC PERIODIC MEDIA
    SUQUET, PM
    COMPTES RENDUS HEBDOMADAIRES DES SEANCES DE L ACADEMIE DES SCIENCES SERIE A, 1980, 291 (02): : 181 - 184
  • [37] ACOUSTIC SCATTERING BY ELASTIC SOLID CYLINDERS AND SPHERES IN VISCOUS FLUIDS
    LIN, WH
    RAPTIS, AC
    JOURNAL OF THE ACOUSTICAL SOCIETY OF AMERICA, 1983, 73 (03): : 736 - 748
  • [38] DYNAMIC RESPONSE OF ELASTIC CYLINDERS IN FLUID LAYER
    Westermo, Bruce D.
    1981, 107 (01): : 187 - 205
  • [39] Homogenization of the fluid–structure interaction in acoustics of porous media perfused by viscous fluid
    Eduard Rohan
    Salah Naili
    Zeitschrift für angewandte Mathematik und Physik, 2020, 71
  • [40] A generalized theory of elastodynamic homogenization for periodic media
    Nassar, H.
    He, Q. -C.
    Auffray, N.
    INTERNATIONAL JOURNAL OF SOLIDS AND STRUCTURES, 2016, 84 : 139 - 146