Delta sets for divisors supported in two points

被引:12
|
作者
Duursma, Iwan M. [1 ]
Park, Seungkook [2 ]
机构
[1] Univ Illinois, Dept Math, Urbana, IL 61801 USA
[2] Univ Cincinnati, Dept Math Sci, Cincinnati, OH 45221 USA
关键词
Algebraic geometric code; Geometric Goppa code; Minimum distance bound; Order bound; Linear secret sharing scheme; Hermitian curve; Suzuki curve; ALGEBRAIC GEOMETRIC CODES; MINIMUM DISTANCE; WEIERSTRASS SEMIGROUP; 2-POINT CODES; GOPPA CODES; CURVE;
D O I
10.1016/j.ffa.2012.06.005
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In Duursma and Park (2010) [7], the authors formulate new coset bounds for algebraic geometric codes. The bounds give improved lower bounds for the minimum distance of algebraic geometric codes as well as improved thresholds for algebraic geometric linear secret sharing schemes. The bounds depend on the delta set of a coset and on the choice of a sequence of divisors inside the delta set. In this paper we give general properties of delta sets and we analyze sequences of divisors supported in two points on Hermitian and Suzuki curves. (C) 2012 Elsevier Inc. All rights reserved.
引用
收藏
页码:865 / 885
页数:21
相关论文
共 50 条