Delta sets for divisors supported in two points

被引:12
|
作者
Duursma, Iwan M. [1 ]
Park, Seungkook [2 ]
机构
[1] Univ Illinois, Dept Math, Urbana, IL 61801 USA
[2] Univ Cincinnati, Dept Math Sci, Cincinnati, OH 45221 USA
关键词
Algebraic geometric code; Geometric Goppa code; Minimum distance bound; Order bound; Linear secret sharing scheme; Hermitian curve; Suzuki curve; ALGEBRAIC GEOMETRIC CODES; MINIMUM DISTANCE; WEIERSTRASS SEMIGROUP; 2-POINT CODES; GOPPA CODES; CURVE;
D O I
10.1016/j.ffa.2012.06.005
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In Duursma and Park (2010) [7], the authors formulate new coset bounds for algebraic geometric codes. The bounds give improved lower bounds for the minimum distance of algebraic geometric codes as well as improved thresholds for algebraic geometric linear secret sharing schemes. The bounds depend on the delta set of a coset and on the choice of a sequence of divisors inside the delta set. In this paper we give general properties of delta sets and we analyze sequences of divisors supported in two points on Hermitian and Suzuki curves. (C) 2012 Elsevier Inc. All rights reserved.
引用
收藏
页码:865 / 885
页数:21
相关论文
共 50 条
  • [1] Points of order two on theta divisors
    Marcucci, Valeria Ornella
    Pirola, Gian Pietro
    RENDICONTI LINCEI-MATEMATICA E APPLICAZIONI, 2012, 23 (03) : 319 - 323
  • [2] Paradoxical sets and sets with two removable points
    Mycielski J.
    Tomkowicz G.
    Journal of Geometry, 2018, 109 (2)
  • [3] Uniformly supported sets and fixed points properties
    Alexandru, Andrei
    Ciobanu, Gabriel
    CARPATHIAN JOURNAL OF MATHEMATICS, 2020, 36 (03) : 351 - 364
  • [4] ON THE DENSITY OF SETS OF DIVISORS
    ALDRED, REL
    ANSTEE, RP
    DISCRETE MATHEMATICS, 1995, 137 (1-3) : 345 - 349
  • [5] Sets versus divisors
    Erdos, P
    Schonheim, J
    COMBINATORICS, PAUL ERDOS IS EIGHTY, VOL. 2, 1996, 2 : 193 - 212
  • [6] On embedding a graph on two sets of points
    Di Giacomo, Emilio
    Liotta, Giuseppe
    Trotta, Francesco
    INTERNATIONAL JOURNAL OF FOUNDATIONS OF COMPUTER SCIENCE, 2006, 17 (05) : 1071 - 1094
  • [7] TORSION POINTS ON THETA DIVISORS
    Auffarth, Robert
    Pirola, Gian Pietro
    Manni, Riccardo Salvati
    PROCEEDINGS OF THE AMERICAN MATHEMATICAL SOCIETY, 2017, 145 (01) : 89 - 99
  • [8] Divisors in global analytic sets
    Acquistapace, F.
    Diaz-Cano, A.
    JOURNAL OF THE EUROPEAN MATHEMATICAL SOCIETY, 2011, 13 (02) : 297 - 307
  • [9] Greatest common divisors of integral points of numerically equivalent divisors
    Wang, Julie Tzu-Yueh
    Yasufuku, Yu
    ALGEBRA & NUMBER THEORY, 2021, 15 (01) : 287 - 305
  • [10] A balanced interval of two sets of points on a line
    Kaneko, A
    Kano, M
    COMBINATORIAL GEOMETRY AND GRAPH THEORY, 2005, 3330 : 108 - 112