Spatio-Temporal Graph Neural Networks for Aggregate Load Forecasting

被引:5
|
作者
Eandi, Simone [1 ]
Cini, Andrea [2 ]
Lukovic, Slobodan [2 ]
Alippi, Cesare [2 ,3 ]
机构
[1] Univ Svizzera Italiana, Lugano, Switzerland
[2] Univ Svizzera Italiana, IDSIA, Lugano, Switzerland
[3] Politecn Milan, Milan, Italy
关键词
Spatio-Temporal Graph Neural Network; Smart Grid; Electric Load Forecasting; ELECTRICITY;
D O I
10.1109/IJCNN55064.2022.9892780
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Accurate forecasting of electricity demand is a core component of the modern electricity infrastructure. Several approaches exist that tackle this problem by exploiting modern deep learning tools. However, most previous works focus on predicting the total load as a univariate time series forecasting task, ignoring all fine-grained information captured by the smart meters distributed across the power grid. We introduce a methodology to account for this information in the graph neural network framework. In particular, we consider spatio-temporal graphs where each node is associated with the aggregate load of a cluster of smart meters, and a global graph-level attribute indicates the total load on the grid. We propose two novel spatio-temporal graph neural network models to process this representation and take advantage of both the finer-grained information and the relationships existing between the different clusters of meters. We compare these models on a widely used, openly available, benchmark against a competitive baseline which only accounts for the total load profile. Within these settings, we show that the proposed methodology improves forecasting accuracy.
引用
收藏
页数:8
相关论文
共 50 条
  • [41] Graph Neural Processes for Spatio-Temporal Extrapolation
    Hu, Junfeng
    Liang, Yuxuan
    Fan, Zhencheng
    Chen, Hongyang
    Zheng, Yu
    Zimmermann, Roger
    PROCEEDINGS OF THE 29TH ACM SIGKDD CONFERENCE ON KNOWLEDGE DISCOVERY AND DATA MINING, KDD 2023, 2023, : 752 - 763
  • [42] Spatio-Temporal Pyramid Networks for Traffic Forecasting
    Hu, Jia
    Wang, Chu
    Lin, Xianghong
    MACHINE LEARNING AND KNOWLEDGE DISCOVERY IN DATABASES: RESEARCH TRACK, ECML PKDD 2023, PT I, 2023, 14169 : 339 - 354
  • [43] Spatio-Temporal Functional Neural Networks
    Rao, Aniruddha Rajendra
    Wang, Qiyao
    Wang, Haiyan
    Khorasgani, Hamed
    Gupta, Chetan
    2020 IEEE 7TH INTERNATIONAL CONFERENCE ON DATA SCIENCE AND ADVANCED ANALYTICS (DSAA 2020), 2020, : 81 - 89
  • [44] Spatio-Temporal RBF Neural Networks
    Khan, Shujaat
    Ahmad, Jawwad
    Sadiq, Alishba
    Naseem, Imran
    Moinuddin, Muhammad
    2018 3RD INTERNATIONAL CONFERENCE ON EMERGING TRENDS IN ENGINEERING, SCIENCES AND TECHNOLOGY (ICEEST), 2018,
  • [45] Backbone-based Dynamic Spatio-Temporal Graph Neural Network for epidemic forecasting
    Mao, Junkai
    Han, Yuexing
    Tanaka, Gouhei
    Wang, Bing
    KNOWLEDGE-BASED SYSTEMS, 2024, 296
  • [46] MSGNN: Multi-scale Spatio-temporal Graph Neural Network for epidemic forecasting
    Qiu, Mingjie
    Tan, Zhiyi
    Bao, Bing-Kun
    DATA MINING AND KNOWLEDGE DISCOVERY, 2024, 38 (04) : 2348 - 2376
  • [47] Continual spatio-temporal graph convolutional networks
    Hedegaard, Lukas
    Heidari, Negar
    Iosifidis, Alexandros
    PATTERN RECOGNITION, 2023, 140
  • [48] SPATIO-TEMPORAL GRAPH COMPLEMENTARY SCATTERING NETWORKS
    Cheng, Zida
    Chen, Siheng
    Zhang, Ya
    2022 IEEE INTERNATIONAL CONFERENCE ON ACOUSTICS, SPEECH AND SIGNAL PROCESSING (ICASSP), 2022, : 5573 - 5577
  • [49] Spatio-temporal Road Condition Forecasting with Markov Chains and Artificial Neural Networks
    Sirvio, Konsta
    Hollmen, Jaakko
    HYBRID ARTIFICIAL INTELLIGENCE SYSTEMS, 2008, 5271 : 204 - 211
  • [50] Hierarchical Spatio-Temporal Graph Convolutional Networks and Transformer Network for Traffic Flow Forecasting
    Huo, Guangyu
    Zhang, Yong
    Wang, Boyue
    Gao, Junbin
    Hu, Yongli
    Yin, Baocai
    IEEE TRANSACTIONS ON INTELLIGENT TRANSPORTATION SYSTEMS, 2023, 24 (04) : 3855 - 3867