Solving the full rank interval least squares problem

被引:11
|
作者
Bentbib, AH [1 ]
机构
[1] Univ Cadi Ayyad, Fac Sci & Tech Gueliz, Dept Math & Informat, Marrakech, Morocco
关键词
interval arithmetic; least squares; matrix; preconditioning;
D O I
10.1016/S0168-9274(01)00104-0
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We propose some results based on QR factorization using interval Householder transformations to bound the solutions of full rank least squares problems \\(A) over tilde (.) x - (b) over tilde\\ with (A) over tilde and (b) over tilde both varying within given compact intervals. (C) 2001 IMACS. Published by Elsevier Science B.V. All rights reserved.
引用
收藏
页码:283 / 294
页数:12
相关论文
共 50 条
  • [31] A fast algorithm for solving the Sylvester structured total least squares problem
    Li, Bingyu
    Liu, Zhujun
    Zhi, Lihong
    SIGNAL PROCESSING, 2007, 87 (10) : 2313 - 2319
  • [32] Variable parameter Uzawa method for solving the indefinite least squares problem
    Meng, Lingsheng
    Xin, Kailiang
    Li, Jun
    NUMERICAL ALGORITHMS, 2024,
  • [33] Paige’s Algorithm for solving a class of tensor least squares problem
    Xue-Feng Duan
    Yong-Shen Zhang
    Qing-Wen Wang
    Chun-Mei Li
    BIT Numerical Mathematics, 2023, 63
  • [34] On a global optimization technique for solving a nonlinear hyperboloid least squares problem
    Velázquez, L
    Argáez, M
    Bueno, B
    Stec, B
    Tapia '05: 2005 Richard Tapia Celebration of Diversity in Computing Conference, 2005, : 1 - 3
  • [35] Solving the block-Toeplitz least-squares problem in parallel
    Alonso, P
    Badía, JM
    Vidal, AM
    CONCURRENCY AND COMPUTATION-PRACTICE & EXPERIENCE, 2005, 17 (01): : 49 - 67
  • [36] AN INTERVAL-ANALYSIS APPROACH TO RANK DETERMINATION IN LINEAR LEAST-SQUARES PROBLEMS
    MANTEUFFEL, TA
    SIAM JOURNAL ON SCIENTIFIC AND STATISTICAL COMPUTING, 1981, 2 (03): : 335 - 348
  • [37] A DYNAMICAL SYSTEM ALGORITHM FOR SOLVING A LEAST SQUARES PROBLEM WITH ORTHOGONALITY CONSTRAINTS
    黄建国
    叶中行
    徐雷
    JournalofShanghaiJiaotongUniversity, 2001, (01) : 81 - 85
  • [38] SOLVING THE MINIMAL LEAST-SQUARES PROBLEM SUBJECT TO BOUNDS ON THE VARIABLES
    LOTSTEDT, P
    BIT, 1984, 24 (02): : 206 - 224
  • [39] On direct elimination methods for solving the equality constrained least squares problem
    Liu, Qiaohua
    Wei, Musheng
    LINEAR & MULTILINEAR ALGEBRA, 2010, 58 (02): : 173 - 184
  • [40] Algorithm 853: An efficient algorithm for solving rank-deficient least squares problems
    Foster, Leslie
    Kommu, Rajesh
    ACM TRANSACTIONS ON MATHEMATICAL SOFTWARE, 2006, 32 (01): : 157 - 165