Heading Direction Estimation Using Deep Learning with Automatic Large-scale Data Acquisition

被引:0
|
作者
Berriel, Rodrigo E. [1 ]
Tones, Lucas Tabelini [1 ]
Cardoso, Vinicius B. [1 ]
Guidolini, Ranik [1 ]
Badue, Claudine [1 ]
De Souza, Alberto F. [1 ]
Oliveira-Santos, Thiago [1 ]
机构
[1] Univ Fed Espirito Santo, Dept Informat, Vitoria, ES, Brazil
关键词
Deep Learning; Heading Estimation; Convolutional Neural Networks;
D O I
暂无
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Advanced Driver Assistance Systems (ADAS) have experienced major advances in the past few years. The main objective of ADAS includes keeping the vehicle in the correct road direction, and avoiding collision with other vehicles or obstacles around. In this paper, we address the problem of estimating the heading direction that keeps the vehicle aligned with the road direction. This information can be used in precise localization, road and lane keeping, lane departure warning, and others. To enable this approach, a large-scale database (+1 million images) was automatically acquired and annotated using publicly available platforms such as the Google Street View API and OpenStreetMap. After the acquisition of the database, a CNN model was trained to predict how much the heading direction of a car should change in order to align it to the road 4 meters ahead. To assess the performance of the model, experiments were performed using images from two different sources: a hidden test set from Google Street View (GSV) images and two datasets from our autonomous car (IARA). The model achieved a low mean average error of 2.359 degrees and 2.524 degrees for the GSV and IARA datasets, respectively; performing consistently across the different datasets. It is worth noting that the images from the IARA dataset are very different (camera, FOV, brightness, etc.) from the ones of the GSV dataset, which shows the robustness of the model. In conclusion, the model was trained effortlessly (using automatic processes) and showed promising results in real-world databases working in real-time (more than 75 frames per second).
引用
收藏
页数:8
相关论文
共 50 条
  • [41] Large-scale Pollen Recognition with Deep Learning
    de Geus, Andre R.
    Barcelos, Celia A. Z.
    Batista, Marcos A.
    da Silva, Sergio F.
    2019 27TH EUROPEAN SIGNAL PROCESSING CONFERENCE (EUSIPCO), 2019,
  • [42] Deep Learning on Large-scale Muticore Clusters
    Sakiyama, Kazumasa
    Kato, Shinpei
    Ishikawa, Yutaka
    Hori, Atsushi
    Monrroy, Abraham
    2018 30TH INTERNATIONAL SYMPOSIUM ON COMPUTER ARCHITECTURE AND HIGH PERFORMANCE COMPUTING (SBAC-PAD 2018), 2018, : 314 - 321
  • [43] Beamforming Design for Large-Scale Antenna Arrays Using Deep Learning
    Lin, Tian
    Zhu, Yu
    IEEE WIRELESS COMMUNICATIONS LETTERS, 2020, 9 (01) : 103 - 107
  • [44] Planning Large-scale Object Rearrangement Using Deep Reinforcement Learning
    Ghosh, Sourav
    Das, Dipanjan
    Chakraborty, Abhishek
    Agarwal, Marichi
    Bhowmick, Brojeshwar
    2022 INTERNATIONAL JOINT CONFERENCE ON NEURAL NETWORKS (IJCNN), 2022,
  • [45] Large-Scale and Adaptive Service Composition Using Deep Reinforcement Learning
    Wang, Hongbing
    Gu, Mingzhu
    Yu, Qi
    Fei, Huanhuan
    Li, Jiajie
    Tao, Yong
    SERVICE-ORIENTED COMPUTING, ICSOC 2017, 2017, 10601 : 383 - 391
  • [46] Large-scale flash flood warning in China using deep learning
    Zhao, Gang
    Liu, Ronghua
    Yang, Mingxiang
    Tu, Tongbi
    Ma, Meihong
    Hong, Yang
    Wang, Xiekang
    JOURNAL OF HYDROLOGY, 2022, 604
  • [47] A Novel Pruning Model of Deep Learning for Large-Scale Distributed Data Processing
    Sheng, Yiqiang
    Li, Chaopeng
    Wang, Jinlin
    Deng, Haojiang
    Zhao, Zhenyu
    2015 ASIA-PACIFIC SIGNAL AND INFORMATION PROCESSING ASSOCIATION ANNUAL SUMMIT AND CONFERENCE (APSIPA), 2015, : 314 - 319
  • [48] Software abstractions for large-scale deep learning models in big data analytics
    Khan A.H.
    Qamar A.M.
    Yusuf A.
    Khan R.
    International Journal of Advanced Computer Science and Applications, 2019, 10 (04): : 557 - 566
  • [49] A Data-Centric Approach for Analyzing Large-Scale Deep Learning Applications
    Vineet, S. Sai
    Joseph, Natasha Meena
    Korgaonkar, Kunal
    Paul, Arnab K.
    PROCEEDINGS OF THE 24TH INTERNATIONAL CONFERENCE ON DISTRIBUTED COMPUTING AND NETWORKING, ICDCN 2023, 2023, : 282 - 283
  • [50] Application of a Deep Learning Approach to Analyze Large-Scale MRI Data of the Spine
    Streckenbach, Felix
    Leifert, Gundram
    Beyer, Thomas
    Mesanovic, Anita
    Waescher, Hanna
    Cantre, Daniel
    Langner, Sonke
    Weber, Marc-Andre
    Lindner, Tobias
    HEALTHCARE, 2022, 10 (11)