On Steinitz classes of nonabelian Ga lois extensions and p-ary cyclic Hamming codes.

被引:0
|
作者
Farhat, Maya [1 ]
Sodaigui, Bouchaib [1 ]
机构
[1] Univ Valenciennes, Dept Math, F-59313 Le Mont Houy 9, Valenciennes, France
关键词
Galois module structure; Ring of integers; Realizable Steinitz classes; Hamming code; NON-ABELIAN EXTENSIONS; GALOIS MODULE CLASSES;
D O I
10.1016/j.jnt.2013.07.003
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Let k be a number field and Cl(k) its class group. Let Gamma be a finite group. Let R-t(k, Gamma) be the subset of Cl(k) consisting of those classes which are realizable as Steinitz classes of tamely ramified Galois extensions of k with Galois group isomorphic to Gamma. Let p be a prime number. In the present article, we suppose that Gamma = V x(rho) C, where V is an F5-vector space of dimension r 2, C a cyclic group of order (pr. - 1)/(p - 1) with gcd(r,p - 1) = 1, and p a faithful and irreducible 1F-representation of C in V. We prove that R-t(k,Gamma) is a subgroup of Cl(k) by means of an explicit description and properties of a p-ary cyclic Hamming code. 0 2013 Elsevier Inc. All rights reserved.
引用
收藏
页码:93 / 108
页数:16
相关论文
共 31 条