On Maximal Chain Subgraphs and Covers of Bipartite Graphs

被引:0
|
作者
Calamoneri, Tiziana [1 ]
Gastaldello, Mattia [1 ,2 ,3 ]
Mary, Arnaud [2 ,3 ]
Sagot, Marie-France [2 ,3 ]
Sinaimeri, Blerina [2 ,3 ]
机构
[1] Sapienza Univ Rome, Via Salaria 113, I-00198 Rome, Italy
[2] INRIA, Villeurbanne, France
[3] Univ Lyon 1, Univ Lyon, LBBE, CNRS UMR558, Villeurbanne, France
来源
Combinatorial Algorithms | 2016年 / 9843卷
关键词
Chain subgraph cover problem; Enumeration algorithms; Exact exponential algorithms; COMPLEXITY; BICLIQUES; CLIQUES; ORDER;
D O I
10.1007/978-3-319-44543-4_11
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
In this paper, we address three related problems. One is the enumeration of all the maximal edge induced chain subgraphs of a bipartite graph, for which we provide a polynomial delay algorithm. We give bounds on the number of maximal chain subgraphs for a bipartite graph and use them to establish the input-sensitive complexity of the enumeration problem. The second problem we treat is the one of finding the minimum number of chain subgraphs needed to cover all the edges a bipartite graph. For this we provide an exact exponential algorithm with a non trivial complexity. Finally, we approach the problem of enumerating all minimal chain subgraph covers of a bipartite graph and show that it can be solved in quasi-polynomial time.
引用
收藏
页码:137 / 150
页数:14
相关论文
共 50 条