Soil Moisture Retrieval in Southeast China from Spaceborne GNSS-R Measurements

被引:0
|
作者
Dong, Zhounan [1 ]
Jin, Shuanggen [1 ,2 ]
机构
[1] Chinese Acad Sci, Shanghai Astron Observ, Shanghai 200030, Peoples R China
[2] Nanjing Univ Informat Sci & Technol, Sch Remote Sensing & Geomat Engn, Nanjing 210044, Peoples R China
关键词
D O I
暂无
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
The Global Navigation Satellite System-Reflectometry (GNSS-R) has been proven as a promising remote sensing technique. The Cyclone Global Navigation Satellite System (CYGNSS) was launched in December 2016, which provide a great opportunity to remotely sense the Earth's surface geophysical parameters with unprecedented spatial and temporal resolution. However, it is still under-developing and testing for land surface soil moisture (SM) retrieval. In this paper, we gridded CYGNSS individual DDM-derived reflectivity into the Equal-Area Scalable Earth Grid 2 (EASE-Grid 2) projection, which is aligned with SMAP SM products, to establish a GNSS-R SM retrieval model in Southeast China. In order to refine the SM inversion algorithm, we also adopt the vegetation opacity and roughness coefficient data to mitigate the attenuation effect of vegetation and surface roughness. The accuracy of the CYGNSS derived SM is evaluated and the characteristics of the gridded retrieval SM time series in southeastern China are analyzed.
引用
收藏
页码:1961 / 1965
页数:5
相关论文
共 50 条
  • [41] Evaluation of Spire GNSS-R reflectivity from multiple GNSS constellations for soil moisture estimation
    Setti, Paulo T.
    Tabibi, Sajad
    INTERNATIONAL JOURNAL OF REMOTE SENSING, 2023, 44 (20) : 6422 - 6441
  • [42] NEW APPROACH TO SEA SURFACE WIND RETRIEVAL FROM GNSS-R MEASUREMENTS
    Park, Hyuk
    Valencia, Enric
    Rodriguez-Alvarez, Nereida
    Bosch-Lluis, Xavier
    Ramos-Perez, Isaac
    Camps, Adriano
    2011 IEEE INTERNATIONAL GEOSCIENCE AND REMOTE SENSING SYMPOSIUM (IGARSS), 2011, : 1469 - 1472
  • [43] A method for retrieving soil moisture from GNSS-R by using experiment data
    毛克彪
    Ma Ying
    Shen Xinyi
    Xia Lang
    Tian Shiying
    Han Jiaqi
    Liu Qing
    HighTechnologyLetters, 2015, 21 (02) : 219 - 223
  • [44] RFI Mapped by Spaceborne GNSS-R Data
    Chew, Clara
    Roberts, T. Maximillian
    Lowe, Steve
    NAVIGATION-JOURNAL OF THE INSTITUTE OF NAVIGATION, 2023, 70 (04):
  • [45] Retracking considerations in spaceborne GNSS-R altimetry
    Hyuk Park
    Adriano Camps
    Enric Valencia
    Nereida Rodriguez-Alvarez
    Xavier Bosch-Lluis
    Isaac Ramos-Perez
    Hugo Carreno-Luengo
    GPS Solutions, 2012, 16 : 507 - 518
  • [46] Retracking considerations in spaceborne GNSS-R altimetry
    Park, Hyuk
    Camps, Adriano
    Valencia, Enric
    Rodriguez-Alvarez, Nereida
    Bosch-Lluis, Xavier
    Ramos-Perez, Isaac
    Carreno-Luengo, Hugo
    GPS SOLUTIONS, 2012, 16 (04) : 507 - 518
  • [47] STUDY OF MAIZE PLANTS EFFECTS IN THE RETRIEVAL OF SOIL MOISTURE USING THE INTERFERENCE PATTERN GNSS-R TECHNIQUE
    Rodriguez-Alvarez, N.
    Bosch-Lluis, X.
    Acevo, R.
    Aguasca, A.
    Camps, A.
    Vall-llossera, M.
    Ramos-Perez, I.
    Valencia, E.
    2010 IEEE INTERNATIONAL GEOSCIENCE AND REMOTE SENSING SYMPOSIUM, 2010, : 3813 - 3816
  • [48] Airborne GNSS-R Polarimetric Measurements for Soil Moisture and Above-Ground Biomass Estimation
    Egido, Alejandro
    Paloscia, Simonetta
    Motte, Erwan
    Guerriero, Leila
    Pierdicca, Nazzareno
    Caparrini, Marco
    Santi, Emanuele
    Fontanelli, Giacomo
    Floury, Nicola
    IEEE JOURNAL OF SELECTED TOPICS IN APPLIED EARTH OBSERVATIONS AND REMOTE SENSING, 2014, 7 (05) : 1522 - 1532
  • [49] River Slope Observation From Spaceborne GNSS-R Carrier Phase Measurements: A Case Study
    Wang, Yang
    Morton, Y. Jade
    IEEE GEOSCIENCE AND REMOTE SENSING LETTERS, 2022, 19
  • [50] GNSS-R Soil Moisture Retrieval Based on a XGboost Machine Learning Aided Method: Performance and Validation
    Jia, Yan
    Jin, Shuanggen
    Savi, Patrizia
    Gao, Yun
    Tang, Jing
    Chen, Yixiang
    Li, Wenmei
    REMOTE SENSING, 2019, 11 (14)