Overdetermined Problems for Some Fully Non Linear Operators

被引:10
|
作者
Birindelli, I. [1 ]
Demengel, F. [2 ]
机构
[1] Univ Roma La Sapienza, Dipartimento Matemat G Castelnuovo, I-00185 Rome, Italy
[2] Univ Cergy Pontoise, Lab Anal & Geometrie, Paris, France
关键词
Fully non-linear equations; Overdetermined problems; Symmetry of solutions; 35J25; 35J60; MAXIMUM PRINCIPLE; EIGENVALUE; SYMMETRY; REGULARITY;
D O I
10.1080/03605302.2012.756521
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this paper, we consider the equation |delta u|M a, A (D 2 u)= f(u) in a bounded smooth domain , with both Dirichlet condition u=0 and Neumann condition , where c is a constant, > 1, u is of constant sign and M a, A is one of the Pucci operator. We prove, for different nonlinearities f, that, when a is sufficiently close to A, either u=c=0=f(0) or is a ball, u is radial, and c0 in .
引用
收藏
页码:608 / 628
页数:21
相关论文
共 50 条