Electronic states in finite graphene nanoribbons: Effect of charging and defects

被引:47
|
作者
Ijas, M. [1 ,2 ]
Ervasti, M. [1 ,2 ]
Uppstu, A. [1 ,2 ]
Liljeroth, P. [3 ]
van der Lit, J. [4 ]
Swart, I. [4 ]
Harju, A. [1 ,2 ]
机构
[1] Aalto Univ, Sch Sci, COMP Ctr Excellence, FI-00076 Espoo, Finland
[2] Aalto Univ, Sch Sci, Helsinki Inst Phys, Dept Appl Phys, FI-00076 Espoo, Finland
[3] Aalto Univ, Sch Sci, Dept Appl Phys, Aalto 00076, Finland
[4] Univ Utrecht, Debye Inst Nanomat Sci, NL-3508 TA Utrecht, Netherlands
来源
PHYSICAL REVIEW B | 2013年 / 88卷 / 07期
基金
芬兰科学院; 欧洲研究理事会;
关键词
EDGE STATES;
D O I
10.1103/PhysRevB.88.075429
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
We study the electronic structure of finite armchair graphene nanoribbons using density-functional theory and the Hubbard model, concentrating on the states localized at the zigzag termini. We show that the energy gaps between end-localized states are sensitive to doping, and that in doped systems, the gap between the end-localized states decreases exponentially as a function of the ribbon length. Doping also quenches the antiferromagnetic coupling between the end-localized states leading to a spin-split gap in neutral ribbons. By comparing dI/dV maps calculated using the many-body Hubbard model, its mean-field approximation and density-functional theory, we show that the use of a single-particle description is justified for graphene pi states in case spin properties are not the main interest. Furthermore, we study the effect of structural defects in the ribbons on their electronic structure. Defects at one ribbon terminus do not significantly modify the electronic states localized at the intact end. This provides further evidence for the interpretation of a multipeak structure in a recent scanning tunneling spectroscopy (STS) experiment resulting from inelastic tunneling processes [van der Lit et al., Nat. Commun. 4, 2023 (2013)]. Finally, we show that the hydrogen termination at the flake edges leaves identifiable fingerprints on the positive bias side of STS measurements, thus possibly aiding the experimental identification of graphene structures.
引用
收藏
页数:13
相关论文
共 50 条
  • [31] Effects of zigzag edge states on the thermoelectric properties of finite graphene nanoribbons
    Kuo, David Ming Ting
    JAPANESE JOURNAL OF APPLIED PHYSICS, 2022, 61 (07)
  • [32] Effects of zigzag edge states on the thermoelectric properties of finite graphene nanoribbons
    Kuo, David Ming Ting
    Japanese Journal of Applied Physics, 2022, 61 (07):
  • [33] Defects in Graphene-Based Twisted Nanoribbons: Structural, Electronic, and Optical Properties
    Caetano, E. W. S.
    Freire, V. N.
    dos Santos, S. G.
    Albuquerque, E. L.
    Galvao, D. S.
    Sato, F.
    LANGMUIR, 2009, 25 (08) : 4751 - 4758
  • [34] Engineered electronic states in atomically precise artificial lattices and graphene nanoribbons
    Yan, Linghao
    Liljeroth, Peter
    ADVANCES IN PHYSICS-X, 2019, 4 (01):
  • [35] Transport properties and localization of electronic states in graphene nanoribbons with edge absorptions
    Liu, Y. L.
    Xu, G. L.
    Zhang, X. W.
    JOURNAL OF MATERIALS SCIENCE, 2015, 50 (11) : 3962 - 3969
  • [36] Transport properties and localization of electronic states in graphene nanoribbons with edge absorptions
    Y. L. Liu
    G. L. Xu
    X. W. Zhang
    Journal of Materials Science, 2015, 50 : 3962 - 3969
  • [37] Electronic Properties of Graphene Nanoribbons
    Lukomskaya, M., V
    Pavlovsky, O., V
    PHYSICS OF ATOMIC NUCLEI, 2020, 83 (11) : 1611 - 1614
  • [38] Electronic Properties of Graphene Nanoribbons
    M. V. Lukomskaya
    O. V. Pavlovsky
    Physics of Atomic Nuclei, 2020, 83 : 1611 - 1614
  • [39] Graphene Nanoribbons for Electronic Devices
    Geng, Zhansong
    Haehnlein, Bernd
    Granzner, Ralf
    Auge, Manuel
    Lebedev, Alexander A.
    Davydov, Valery Y.
    Kittler, Mario
    Pezoldt, Joerg
    Schwierz, Frank
    ANNALEN DER PHYSIK, 2017, 529 (11)
  • [40] The effect of magnetic field and disorders on the electronic transport in graphene nanoribbons
    Kumar, S. Bala
    Jalil, M. B. A.
    Tan, S. G.
    Liang, Gengchiau
    JOURNAL OF PHYSICS-CONDENSED MATTER, 2010, 22 (37)