Enhanced activity of chemically synthesized hybrid graphene oxide/Mn3O4 composite for high performance supercapacitors

被引:217
|
作者
Gund, Girish S. [1 ]
Dubal, Deepak P. [2 ]
Patil, Bebi H. [1 ]
Shinde, Sujata S. [1 ]
Lokhande, Chandrakant D. [1 ]
机构
[1] Shivaji Univ, Dept Phys, Thin Film Phys Lab, Kolhapur 416004, MS, India
[2] Tech Univ Chemnitz, Inst Chem, AG Elektrochem, D-09107 Chemnitz, Germany
关键词
Graphene oxide/manganese oxide; composite; Supercapacitor; Impedance; Energy density; MN3O4; THIN-FILMS; HYDROTHERMAL SYNTHESIS; GRAPHITE OXIDE; HIGH-ENERGY; ELECTRODES; MNO2; CARBON; TRANSPARENT; SHEETS;
D O I
10.1016/j.electacta.2012.12.120
中图分类号
O646 [电化学、电解、磁化学];
学科分类号
081704 ;
摘要
In this study, we have improved the capacitance of carbon based graphene oxide (GO) and metal oxide based manganese oxide (Mn3O4) thin films by preparing thin films of GO/Mn3O4 composite using simple and inexpensive successive ionic layer adsorption and reaction (SILAR) method. These prepared films are characterized by X-ray diffraction (XRD), Fourier transform infrared (FTIR) spectroscopy, Raman spectroscopy, scanning electron microscopy (SEM), Energy dispersive X-ray spectroscopy (EDAX) and BET techniques. The XRD analysis reveals the formation of GO, Mn3O4 and GO/Mn3O4 composite thin films and the FTIR studies disclose the characteristic chemical bonding between the respective materials. Furthermore, Raman measurements confirm the formation of GO and GO/Mn3O4 composite thin films. The SEM images demonstrate that the surface structure of GO and Mn3O4 thin films can be easily tuned by forming the composite of GO and Mn3O4 materials leading to excellent processability of a system. The surface area of GO/Mn3O4 composite (94 m(2) g(-1)) is measured by using Brunauer-Emmett-Teller (BET) technique. The supercapacitive behaviors of different electrodes are evaluated using cyclic voltammetry (CV) and galvanostatic charge-discharge techniques in 1 M Na2SO4. The specific capacitance of 344 Fg(-1) is achieved for GO/Mn3O4 composite electrode at a scan rate of 5 my s(-1). In addition, impedance measurements of the GO, Mn3O4 and GO/Mn3O4 electrodes are executed proposing that the GO/Mn3O4 composite electrodes are promising materials for supercapacitor application. (C) 2013 Elsevier Ltd. All rights reserved.
引用
收藏
页码:205 / 215
页数:11
相关论文
共 50 条
  • [31] Enhanced performance of carbon dots and Mn3O4 composite by phosphate in peroxymonosulfate activation
    Zhu, Yongjian
    Quan, Zhipeng
    Zhang, Bolun
    Zheng, Junhui
    Wang, Jie
    Zhang, Xinxin
    Zhang, Chi
    Yang, Tao
    He, Xin
    Qu, Songnan
    Chen, Yeqing
    Liang, Ping
    APPLIED CATALYSIS B-ENVIRONMENT AND ENERGY, 2024, 351
  • [32] Effect of Cr doping on Mn3O4 thin films for high-performance Supercapacitors
    P. Immanuel
    G. Senguttuvan
    J. H. Chang
    K. Mohanraj
    N. Senthil Kumar
    Journal of Materials Science: Materials in Electronics, 2021, 32 : 3732 - 3742
  • [33] Effect of Cr doping on Mn3O4 thin films for high-performance Supercapacitors
    Immanuel, P.
    Senguttuvan, G.
    Chang, J. H.
    Mohanraj, K.
    Kumar, N. Senthil
    JOURNAL OF MATERIALS SCIENCE-MATERIALS IN ELECTRONICS, 2021, 32 (03) : 3732 - 3742
  • [34] Charge storage mechanisms of electrospun Mn3O4 nanofibres for high-performance supercapacitors
    Suktha, Phansiri
    Phattharasupakun, Nutthaphon
    Dittanet, Peerapan
    Sawangphruk, Montree
    RSC ADVANCES, 2017, 7 (16): : 9958 - 9963
  • [35] High-performance Mn3O4 nanomaterials synthesized via a new two-step hydrothermal method in asymmetric supercapacitors
    Wang, Zhongbing
    Fang, Jingyuan
    Hao, Yonghao
    Chen, Chunnian
    Zhang, Dawei
    MATERIALS SCIENCE IN SEMICONDUCTOR PROCESSING, 2021, 130
  • [36] Facile Synthesis of Mn3O4 Nanoparticles Decorated Graphene as Enhanced Performance Electrode for Supercapacitor
    Sun, Hui
    Liu, Chengbao
    Qian, Junchao
    Chen, Feng
    Wu, Zhengying
    Chen, Zhigang
    ADVANCED FUNCTIONAL MATERIALS (CMC 2017), 2018, : 109 - 118
  • [37] One-pot hydrothermal synthesis of Mn3O4/graphene nanocomposite for supercapacitors
    Fan, Yafei
    Zhang, Xudong
    Liu, Yushan
    Cai, Qiang
    Zhang, Jianmin
    MATERIALS LETTERS, 2013, 95 : 153 - 156
  • [38] A green approach for single-pot synthesis of graphene oxide and its composite with Mn3O4
    Rathour, Rishi Karan Singh
    Bhattacharya, Jayanta
    APPLIED SURFACE SCIENCE, 2018, 437 : 41 - 50
  • [39] Reduced graphene oxide/Mn3O4 nanohybrid for high-rate pseduocapacitive electrodes
    Yao, Jun
    Yao, Shanshan
    Gao, Fei
    Duan, Limei
    Niu, Mutong
    Liu, Jinghai
    JOURNAL OF COLLOID AND INTERFACE SCIENCE, 2018, 511 : 434 - 439
  • [40] Improved electrochemical performance of Mn3O4 thin film electrodes for supercapacitors
    Shaik, Dadamiah P. M. D.
    Rosaiah, P.
    Ganesh, K. Sivajee
    Qiu, Yejun
    Hussain, O. M.
    MATERIALS SCIENCE IN SEMICONDUCTOR PROCESSING, 2018, 84 : 83 - 90