Real-Time Classification of Earthquake using Deep Learning

被引:39
|
作者
Kuyuk, H. Serdar [1 ]
Susumu, Ohno [1 ]
机构
[1] Tohoku Univ, Sendai, Miyagi, Japan
来源
关键词
Earthquake Early Warning System; Deep Learning; Convulat onal Neural Network; Long Short-Term Memory; SEISMIC ACTIVITIES; ALGORITHM;
D O I
10.1016/j.procs.2018.10.316
中图分类号
TP301 [理论、方法];
学科分类号
081202 ;
摘要
Existing Earthquake Early Warning Systems (EEWSs) calculates the location and magnitude of an earthquake using real-time waveforms from seismic stations within a few seconds. Typically, three to six stations are necessary to estimate earthquake parameters. Waiting for primary (P-) wave information from closest stations results in a blind-zone area where the arrival of secondary (S-) wave cannot be provided around the epicenter of an earthquake. If an earthquake occurred under a city center, EEWSs would not work even though each building has a seismic sensor in a smart city in future. Here, we present a methodology to classify earthquake vibrations into near-source or far-source within one second after P-wave detection. This will allow warnings to citizens who are the residence of earthquake epicenter in case of an earthquake very close by. We trained a deep learning Long Short-Term Memory (LSTM) network for sequence-to -label classification. 305 three component accelerations recorded between 2000 and 2018 in Japan are used to train the artificial network by extracting thirteen features of one second of P-wave. The accuracy of the methodology is 98.2%. 54 out of 55 near-source waveforms classified correctly and only 2 of 80 waveforms were misclassified. We tested the LSTM network with 2018 Northern Osaka (M 6.1.) earthquakes in Japan where closest stations are correctly identified with 83.3% accuracy. Therefore, smart cities donated with smart automated shut-on/off machines and sensors will be more resilient against earthquake disaster even EEWSs are not available in the blind zone area in future. (C) 2018 The Authors. Published by Elsevier B.V.
引用
收藏
页码:298 / 305
页数:8
相关论文
共 50 条
  • [31] Real-Time Traffic Sign Recognition Using Deep Learning
    Shivayogi, Ananya Belagodu
    Dharmendra, Nehal Chakravarthy Matasagara
    Ramakrishna, Anala Maddur
    Subramanya, Kolala Nagaraju
    PERTANIKA JOURNAL OF SCIENCE AND TECHNOLOGY, 2023, 31 (01): : 137 - 148
  • [32] Predicting real-time traffic conflicts using deep learning
    Formosa, Nicolette
    Quddus, Mohammed
    Ison, Stephen
    Abdel-Aty, Mohamed
    Yuan, Jinghui
    ACCIDENT ANALYSIS AND PREVENTION, 2020, 136
  • [33] Real-time Driver Drowsiness Detection using Deep Learning
    Dipu M.T.A.
    Hossain S.S.
    Arafat Y.
    Rafiq F.B.
    Dipu, Md. Tanvir Ahammed, 1600, Science and Information Organization (12): : 844 - 850
  • [34] Real-Time Emotion Recognition Using Deep Learning Algorithms
    El Mettiti, Abderrahmane
    Oumsis, Mohammed
    Chehri, Abdellah
    Saadane, Rachid
    2022 IEEE 96TH VEHICULAR TECHNOLOGY CONFERENCE (VTC2022-FALL), 2022,
  • [35] Simulation of hyperelastic materials in real-time using deep learning
    Mendizabal, Andrea
    Marquez-Neila, Pablo
    Cotin, Stephane
    MEDICAL IMAGE ANALYSIS, 2020, 59
  • [36] Real-time combustion progress estimation using deep learning
    Pushpalayam, Navaneeth
    Nguyen, Cuong M.
    Sun, Zongxuan
    Rothamer, David A.
    Kim, Kenneth
    Kweon, Chol-Bum
    Rajamani, Rajesh
    MECHANICAL SYSTEMS AND SIGNAL PROCESSING, 2025, 230
  • [37] Real-time relative permeability prediction using deep learning
    Arigbe, O. D.
    Oyeneyin, M. B.
    Arana, I.
    Ghazi, M. D.
    JOURNAL OF PETROLEUM EXPLORATION AND PRODUCTION TECHNOLOGY, 2019, 9 (02) : 1271 - 1284
  • [38] Research on Real-Time Ship Detection Using Deep Learning
    Yu, Jingming
    Wang, Jie
    Ren, Rong
    Lai, Qiuyu
    Luo, Xinpeng
    Lu, Hua
    2022 IEEE 7TH INTERNATIONAL CONFERENCE ON INTELLIGENT TRANSPORTATION ENGINEERING, ICITE, 2022, : 481 - 485
  • [39] Real-time reef fishes identification using deep learning
    Yusup, I. M.
    Iqbal, M.
    Jaya, I
    3RD INTERNATIONAL CONFERENCE ON MARINE SCIENCE (ICMS) 2019 - TOWARDS SUSTAINABLE MARINE RESOURCES AND ENVIRONMENT, 2020, 429
  • [40] Real-time relative permeability prediction using deep learning
    O. D. Arigbe
    M. B. Oyeneyin
    I. Arana
    M. D. Ghazi
    Journal of Petroleum Exploration and Production Technology, 2019, 9 : 1271 - 1284