A linearized Euler finite-difference time-domain sound propagation model with terrain-following coordinates

被引:21
|
作者
Heimann, D [1 ]
Karle, R [1 ]
机构
[1] Deutsch Zentrum Luft & Raumfahrt, Inst Phys Atmospher Oberpfaffenhofen, D-82234 Wessling, Germany
来源
关键词
D O I
10.1121/1.2200139
中图分类号
O42 [声学];
学科分类号
070206 ; 082403 ;
摘要
The equations of a linearized Euler finite-difference time-domain model for sound propagation through an inhomogeneous and moving atmosphere above absorbing ground are adapted to terrain-following coordinates. With the transformed numerical grid the effect of gentle orography is fully considered and the shortcomings of the representation of the orography by blocked-out grid cells in an untransformed grid are avoided. Comparisons with an analytical method to predict the interference patterns of a monochromic sound field above an idealized hill with rigid ground show good agreement. Further applications include absorbing ground and wind. A three-dimensional application also is discussed. (c) 2006 Acoustical Society of America.
引用
收藏
页码:3813 / 3821
页数:9
相关论文
共 50 条
  • [21] CONFORMAL HYBRID FINITE-DIFFERENCE TIME-DOMAIN AND FINITE-VOLUME TIME-DOMAIN
    YEE, KS
    CHEN, JS
    IEEE TRANSACTIONS ON ANTENNAS AND PROPAGATION, 1994, 42 (10) : 1450 - 1454
  • [22] Least Squares Finite-Difference Time-Domain
    de Oliveira, Rodrigo M. S.
    Paiva, Rodrigo R.
    IEEE TRANSACTIONS ON ANTENNAS AND PROPAGATION, 2021, 69 (09) : 6111 - 6115
  • [23] Computationally efficient transparent sound source for the finite-difference time-domain method
    Toyoda, Masahiro
    Yatabe, Kohei
    ACOUSTICAL SCIENCE AND TECHNOLOGY, 2023, 44 (05) : 371 - 382
  • [24] Finite-Difference Time-Domain Analysis of Sound Insulation Performance of Wall Systems
    Asakura, Takumi
    Sakamoto, Shinichi
    BUILDING ACOUSTICS, 2009, 16 (03) : 267 - 281
  • [25] Quantum Finite-Difference Time-Domain Scheme
    Na, Dong-Yeop
    Chew, Weng Cho
    PROCEEDINGS OF THE 2020 IEEE INTERNATIONAL CONFERENCE ON COMPUTATIONAL ELECTROMAGNETICS (ICCEM 2020), 2020, : 62 - 63
  • [26] Generalized finite-difference time-domain algorithm
    Gao, Benqing
    Gandhi, Om.P.
    Tien Tzu Hsueh Pao/Acta Electronica Sinica, 1993, 21 (03): : 31 - 36
  • [27] A SEMIVECTORIAL FINITE-DIFFERENCE TIME-DOMAIN METHOD
    HUANG, WP
    CHU, ST
    CHAUDHURI, SK
    IEEE PHOTONICS TECHNOLOGY LETTERS, 1991, 3 (09) : 803 - 806
  • [28] Finite-difference time-domain on the Cell/BE processor
    Xu, Meilian
    Thulasiraman, Parimala
    2008 IEEE INTERNATIONAL SYMPOSIUM ON PARALLEL & DISTRIBUTED PROCESSING, VOLS 1-8, 2008, : 3025 - 3032
  • [29] On the stability of the finite-difference time-domain method
    Remis, RF
    JOURNAL OF COMPUTATIONAL PHYSICS, 2000, 163 (01) : 249 - 261
  • [30] SOME CONSIDERATIONS ABOUT THE FINITE-DIFFERENCE TIME-DOMAIN METHOD IN GENERAL CURVILINEAR COORDINATES
    NAVARRO, EA
    WU, C
    CHUNG, PY
    LITVA, J
    IEEE MICROWAVE AND GUIDED WAVE LETTERS, 1994, 4 (12): : 396 - 398