Hydrogen generation by ammonia decomposition over Co/CeO2 catalyst: Influence of support morphologies

被引:85
|
作者
Huang, Chuanqing [1 ]
Yu, Yingzhi [2 ]
Tang, Xiaoyue [1 ]
Liu, Zeyu [1 ]
Zhang, Jin [1 ]
Ye, Chuanzhen [1 ]
Ye, Yong [1 ]
Zhang, Rongbin [2 ]
机构
[1] South China Univ Technol, Sch Chem & Chem Engn, Guangzhou 510006, Peoples R China
[2] Nanchang Univ, Coll Chem, Inst Appl Chem, Key Lab Jiangxi Prov Environm & Energy Catalysis, Nanchang 330031, Jiangxi, Peoples R China
基金
中国国家自然科学基金; 国家重点研发计划;
关键词
Cobalt catalysis; Morphology effect; Ammonia decomposition; CeO2; COX-FREE HYDROGEN; MESOPOROUS SILICA; OXYGEN VACANCIES; CARBON SUPPORT; STORAGE; CERIA; NI; PERFORMANCE; NANOTUBES; OXIDATION;
D O I
10.1016/j.apsusc.2020.147335
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
The fabrication of nanomaterial is a crucial issue in heterogeneous catalysis for on-site generation of hydrogen in proton exchange membrane fuel cell to achieve excellent performance for ammonia decomposition, and their effects of morphologies are still mysterious in the structure-reactivity relationship. In order to disclose it, three kinds of CeO2 supports with three-dimensionally ordered mesoporous structure (3DOM), nanotubes (NT) and nanocubes (NC) were synthesized by nanocasting of a mesoporous silica KIT-6 template with cubic Ia3d symmetries, hydrothermal method with and without urea, respectively. Various characterization methods (XRD, BET, H-2-TPR, CO-TPD, TEM and XPS) were used to characterize the structure-reactivity relationship of catalysts. The Co/CeO2-3DOM catalyst had higher H-2 producing rate (4.2 mmol/min.g(cat)) than Co/CeO2-NC (3.5 mmol/min . g(cat)) and Co/CeO2-NT (3.2 mmol/min.g(cat)) under the reaction conditions of 500 degrees C and GHSV = 6000 mL/g(cat).h. The Co/CeO2-3DOM catalysts presented Co nanoparticles with mean size of 5.2 nm, and the highest surface Co concentration (5.12%) and Ce3+/Ce4+ ratio (0.53). Its high activity is attributed to higher surface area and more surface oxygen vacancies. The specific surface area and surface oxygen vacancy are significantly affected by the morphology of CeO2 support. The more mechanism insight of the structure-activity relationship for ammonia decomposition has been revealed.
引用
收藏
页数:9
相关论文
共 50 条
  • [31] CeO2/Ni Inverse Catalyst as a Highly Active and Stable Ru-free Catalyst for Ammonia Decomposition
    Liu, Hongwang
    Zhang, Rongrong
    Liu, Sibao
    Liu, Guozhu
    ACS CATALYSIS, 2024, 14 (13): : 9927 - 9939
  • [32] Autothermal reforming of ethanol for hydrogen production over an Rh/CeO2 catalyst
    Cai, Weijie
    Wang, Fagen
    Van Veen, A. C.
    Provendier, H.
    Mirodatos, C.
    Shen, Wenjie
    CATALYSIS TODAY, 2008, 138 (3-4) : 152 - 156
  • [33] Hydrogen production from methane decomposition over Ni/CeO2 catalysts
    Li, Yong
    Zhang, Baocai
    Tang, Xiaolan
    Xu, Yide
    Shen, Wenjie
    CATALYSIS COMMUNICATIONS, 2006, 7 (06) : 380 - 386
  • [34] Role of CO2 on CO preferential oxidation over CuO/CeO2 catalyst
    Di Benedetto, A.
    Landi, G.
    Lisi, L.
    Russo, G.
    APPLIED CATALYSIS B-ENVIRONMENTAL, 2013, 142 : 169 - 177
  • [35] Effect of ceria morphology on the catalytic activity of Co/CeO2 catalyst for ammonia synthesis
    Lin, Bingyu
    Liu, Yi
    Heng, Lan
    Ni, Jun
    Lin, Jianxin
    Jiang, Lilong
    CATALYSIS COMMUNICATIONS, 2017, 101 : 15 - 19
  • [36] Tuning Surface Composition of Ni-Pt/CeO2 Catalyst for Hydrogen Generation from Hydrous Hydrazine Decomposition
    Qiu Yuping
    Dai Hao
    Dai Hongbin
    Wang Ping
    ACTA METALLURGICA SINICA, 2018, 54 (09) : 1289 - 1296
  • [37] Ammonia decomposition over SiO2-supported Ni-Co bimetallic catalyst for COx-free hydrogen generation
    Wu, Ze-Wei
    Li, Xin
    Qin, Yuan-Hang
    Deng, Lidan
    Wang, Cun-Wen
    Jiang, Xingmao
    INTERNATIONAL JOURNAL OF HYDROGEN ENERGY, 2020, 45 (30) : 15263 - 15269
  • [38] Influence of the CeO2 Support on the Reduction Properties of Cu/CeO2 and Ni/CeO2 Nanoparticles
    Matte, Livia P.
    Kilian, Alex S.
    Luza, Leandro
    Alves, Maria C. M.
    Morais, Jonder
    Baptista, Daniel L.
    Dupont, Jairton
    Bernardi, Fabian
    JOURNAL OF PHYSICAL CHEMISTRY C, 2015, 119 (47): : 26459 - 26470
  • [39] Preferential oxidation of CO in excess H2 over the CeO2/CuO catalyst: Effect of initial support
    Zhiming Gao
    Yuanyuan Gong
    Qiang Zhang
    Hao Deng
    Yong Yue
    Journal of Energy Chemistry, 2014, (04) : 475 - 482
  • [40] Preferential oxidation of CO in excess H2 over the CeO2/CuO catalyst: Effect of initial support
    Gao, Zhiming
    Gong, Yuanyuan
    Zhang, Qiang
    Deng, Hao
    Yue, Yong
    JOURNAL OF ENERGY CHEMISTRY, 2014, 23 (04) : 475 - 482