PARTIAL PERMUTATION DECODING FOR SIMPLEX CODES

被引:13
|
作者
Fish, Washiela [1 ]
Key, Jennifer D. [1 ]
Mwambene, Eric [1 ]
机构
[1] Univ Western Cape, Dept Math & Appl Math, ZA-7535 Bellville, South Africa
关键词
Hamming codes; simplex codes; permutation decoding; antiblocking decoding; PD-SETS;
D O I
10.3934/amc.2012.6.505
中图分类号
TP301 [理论、方法];
学科分类号
081202 ;
摘要
We show how to find s-PD-sets of size s + 1 that satisfy the Gordon-Schonheim bound for partial permutation decoding for the binary simplex codes S-n(F-2) for all n >= 4, and for all values of s up to left perpendicular2(n)-1/nright perpendicular - 1. The construction also applies to the q-ary simplex codes S-n(F-q) for q > 2, and to s-antiblocking information systems of size s + 1, for s up to left perpendicular(q(n)-1)/(q-1)/nright perpendicular - 1 for all q.
引用
收藏
页码:505 / 516
页数:12
相关论文
共 50 条
  • [21] Codes associated with circulant graphs and permutation decoding
    Padmapani Seneviratne
    Designs, Codes and Cryptography, 2014, 70 : 27 - 33
  • [22] Reed-Muller codes and permutation decoding
    Key, J. D.
    McDonough, T. P.
    Mavron, V. C.
    DISCRETE MATHEMATICS, 2010, 310 (22) : 3114 - 3119
  • [23] Codes associated with circulant graphs and permutation decoding
    Seneviratne, Padmapani
    DESIGNS CODES AND CRYPTOGRAPHY, 2014, 70 (1-2) : 27 - 33
  • [24] Decoding mixed errors and erasures in permutation codes
    Hunt, Francis H.
    Perkins, Stephanie
    Smith, Derek H.
    DESIGNS CODES AND CRYPTOGRAPHY, 2015, 74 (02) : 481 - 493
  • [25] Decoding mixed errors and erasures in permutation codes
    Francis H. Hunt
    Stephanie Perkins
    Derek H. Smith
    Designs, Codes and Cryptography, 2015, 74 : 481 - 493
  • [26] Partial permutation decoding and PD-sets for Zps-linear generalized Hadamard codes
    Torres-Martin, Adrian
    Villanueva, Merce
    FINITE FIELDS AND THEIR APPLICATIONS, 2024, 93
  • [27] Permutation decoding of codes from generalized Paley graphs
    Seneviratne, Padmapani
    Limbupasiriporn, Jirapha
    APPLICABLE ALGEBRA IN ENGINEERING COMMUNICATION AND COMPUTING, 2013, 24 (3-4) : 225 - 236
  • [29] Finite Geometry Codes Based on Geometry Permutation Decoding
    Wang, Jyun-Jie
    Lin, Chi-Yuan
    2016 INTERNATIONAL SYMPOSIUM ON COMPUTER, CONSUMER AND CONTROL (IS3C), 2016, : 1051 - 1054
  • [30] Recursive and permutation decoding for Reed-Muller codes
    Dumer, I
    Shabunov, K
    ISIT: 2002 IEEE INTERNATIONAL SYMPOSIUM ON INFORMATION THEORY, PROCEEDINGS, 2002, : 146 - 146