MOCVD of thin film photovoltaic solar cells-Next-generation production technology?

被引:62
|
作者
Irvine, S. J. C.
Barrioz, V.
Lamb, D.
Jones, E. W.
Rowlands-Jones, R. L.
机构
[1] Centre for Solar Energy Research, St. Asaph Business Park, North Wales, OpTIC Technium
基金
英国工程与自然科学研究理事会;
关键词
Metalorganic chemical vapour deposition; Cadmium compounds; Semiconducting II-VI materials; Solar cells;
D O I
10.1016/j.jcrysgro.2008.07.121
中图分类号
O7 [晶体学];
学科分类号
0702 ; 070205 ; 0703 ; 080501 ;
摘要
This paper will review the chalcogenide thin film photovoltaic (PV) solar cells, based on cadmium telluride (CdTe) and copper indium diselenide (CIS) and discuss the potential for metalorganic chemical vapour deposition (MOCVD) to enable more advanced devices in the second generation of CdTe module production. The current generation of production methods is based on physical vapour deposition (PVD) or close-spaced sublimation (CSS). This paper concentrates on the less well-known topic of MOCVD of thin film chalcogenide cells, and in particular that of CdTe. Efficient CdTe PV solar cells (> 10% AM1.5) have been demonstrated from deposition of the CdS, CdTe and CdCl2 films in a single MOCVD chamber. The CdTe layer was doped with As and an additional high As concentration CdTe layer provides effective low resistance contacting without the need for wet etching the surface. The high level of flexibility in using MOCVD has been demonstrated where the CdS window layer has been alloyed with Zn to improve the blue response of the PV device and improve AM1.5 efficiency to 13.3%. (c) 2008 Elsevier B.V. All rights reserved.
引用
收藏
页码:5198 / 5203
页数:6
相关论文
共 50 条
  • [31] Enhancing the performance of thin film CdS/PbS photovoltaic solar cells
    Mohamed, H. A.
    PHILOSOPHICAL MAGAZINE, 2014, 94 (30) : 3467 - 3486
  • [32] MOCVD technology for the production of highly efficient GaAlP/GaAs/Ge solar cells
    Beccard, R
    Protzmann, H
    Schmitz, DA
    Strauch, G
    Heuken, M
    Juergensen, H
    OPTOELECTRONIC MATERIALS AND DEVICES, 1998, 3419 : 70 - 77
  • [33] Bifacial perovskite thin film solar cells: Pioneering the next frontier in solar energy
    Nazir, Ghazanfar
    Rehman, Adeela
    Hussain, Sajjad
    Aftab, Sikandar
    Patil, Supriya A.
    Aslam, Muhammad
    Hafez, Amal A. Abdel
    Heo, Kwang
    NANO ENERGY, 2025, 134
  • [34] Metal halide perovskite-based flexible tandem solar cells: next-generation flexible photovoltaic technology
    Jiang, Yan
    Qi, Yabing
    MATERIALS CHEMISTRY FRONTIERS, 2021, 5 (13) : 4833 - 4850
  • [35] Spiers Memorial Lecture: Next generation chalcogenide-based absorbers for thin-film solar cells
    Mitzi, David B.
    Kim, Yongshin
    FARADAY DISCUSSIONS, 2022, 239 (00) : 9 - 37
  • [36] CdTe thin film solar cells: device and technology issues
    Ferekides, CS
    Balasubramanian, U
    Mamazza, R
    Viswanathan, V
    Zhao, H
    Morel, DL
    SOLAR ENERGY, 2004, 77 (06) : 823 - 830
  • [37] High Quality and Thin Silicon Wafer for Next Generation Solar Cells
    Ohshita, Yoshio
    Kojima, Takuto
    Suzuki, Ryota
    Kinoshita, Kosuke
    Kawatsu, Tomoyuki
    Nakamura, Kyotaro
    Ogura, Atsushi
    2017 IEEE 44TH PHOTOVOLTAIC SPECIALIST CONFERENCE (PVSC), 2017, : 2588 - 2592
  • [38] Fine line metallization by coextrusion technology for next generation solar cells
    Beutel, M.
    Lewis, A.
    Prondzinski, M.
    Selbmann, F.
    Richter, P.
    Bamberg, F.
    Raschtschepkin, P.
    Krause, A.
    Koch, C.
    Hentsche, M.
    Stegemann, K. -H.
    Schneiderloechner, E.
    Neuhaus, H.
    SOLAR ENERGY MATERIALS AND SOLAR CELLS, 2014, 131 : 64 - 71
  • [39] Thin Film Photovoltaic/Thermal Solar Panels
    David JOHNSTON
    电工电能新技术, 2008, (03) : 1 - 8
  • [40] Solar photovoltaic panels as next generation waste: a review
    Mishra, Sunanda
    Rout, Prasant Kumar
    Das, Alok Prasad
    BIOINTERFACE RESEARCH IN APPLIED CHEMISTRY, 2019, 9 (06): : 4539 - 4546