This paper presents the experimental results of the wood columns externally strengthened with fiber reinforced polymer (FRP) subjected to axial compressive loading. In total, 14 square short wood columns were made, which were reinforced by FRP in two reinforcing arrangements. The main parameters studied in the test were (1) the strengthening materials, i.e. carbon FRP (CFRP), basalt FRP (BFRP) and aramid FRP (AFRP); (2) the reinforcing arrangements, i.e. the full wrapping of FRP and the partial reinforcing arrangement; (3) the layers of FRP sheets applied, i.e. one, two and three. The ultimate strength, load-axial displacements curves, load-strain relationships, and the failure modes of all the columns were presented. The test results show that both types of the reinforcing arrangements could increase the ultimate strength and stiffness of the columns tested greatly. The columns strengthened with two layers of FRP sheets gave higher load carrying capacities when compared to the columns strengthened with one or three layers of FRP sheets. The result confirms that the more layers of FRP sheets, the higher of load carrying capacity; however, the adverse results were shown when three layers of FRP sheets applied. Finally, the result also showed that the full wrapping reinforcing arrangement is more effective than the partial one in enhancing the stiffness.