Weak turbulence in two-dimensional magnetohydrodynamics

被引:14
|
作者
Tronko, N. [1 ]
Nazarenko, S. V. [2 ]
Galtier, S. [3 ,4 ]
机构
[1] Univ Warwick, Dept Phys, Ctr Fus Space & Astrophys, Coventry CV4 7AL, W Midlands, England
[2] Univ Warwick, Dept Math, Coventry CV4 7AL, W Midlands, England
[3] Univ Paris 11, Inst Astrophys Spatiale, F-91405 Orsay, France
[4] Inst Univ France, F-75005 Paris, France
来源
PHYSICAL REVIEW E | 2013年 / 87卷 / 03期
关键词
SCALING PROPERTIES; MAGNETIC-FIELDS; RECONNECTION; SPECTRUM; DECAY;
D O I
10.1103/PhysRevE.87.033103
中图分类号
O35 [流体力学]; O53 [等离子体物理学];
学科分类号
070204 ; 080103 ; 080704 ;
摘要
A weak wave turbulence theory is developed for two-dimensional (2D) magnetohydrodynamics. We derive and analyze the kinetic equation describing the three-wave interactions of pseudo-Alfven waves. Our analysis is greatly helped by the fortunate fact that in 2D the wave kinetic equation is integrable. In contrast with the three-dimensional case, in 2D the wave interactions are nonlocal. Another distinct feature is that strong derivatives of spectra tend to appear in the region of small parallel (i.e., along the uniform magnetic field direction) wave numbers leading to a breakdown of the weak-turbulence description in this region. We develop a qualitative theory beyond weak turbulence describing subsequent evolution and formation of a steady state. DOI: 10.1103/PhysRevE.87.033103
引用
收藏
页数:11
相关论文
共 50 条
  • [31] Two-dimensional gyrokinetic turbulence
    Plunk, G. G.
    Cowley, S. C.
    Schekochihin, A. A.
    Tatsuno, T.
    JOURNAL OF FLUID MECHANICS, 2010, 664 : 407 - 435
  • [32] Two-dimensional turbulence on a sphere
    Lindborg, Erik
    Nordmark, Arne
    JOURNAL OF FLUID MECHANICS, 2022, 933
  • [33] Extensivity of two-dimensional turbulence
    Tran, CV
    Shepherd, TG
    Cho, HR
    PHYSICA D-NONLINEAR PHENOMENA, 2004, 192 (3-4) : 187 - 195
  • [34] Two-dimensional elastic turbulence
    Berti, S.
    Bistagnino, A.
    Boffetta, G.
    Celani, A.
    Musacchio, S.
    PHYSICAL REVIEW E, 2008, 77 (05):
  • [35] Two-dimensional convective turbulence
    Gruzinov, AV
    Kukharkin, N
    Sudan, RN
    PHYSICAL REVIEW LETTERS, 1996, 76 (08) : 1260 - 1263
  • [36] Topology of two-dimensional turbulence
    Daniel, WB
    Rutgers, MA
    PHYSICAL REVIEW LETTERS, 2002, 89 (13)
  • [37] TWO-DIMENSIONAL TURBULENCE - INTRODUCTION
    LESIEUR, M
    JOURNAL DE MECANIQUE THEORIQUE ET APPLIQUEE, 1983, : 5 - 20
  • [38] On two-dimensional magnetohydrodynamic turbulence
    Biskamp, D
    Schwarz, E
    PHYSICS OF PLASMAS, 2001, 8 (07) : 3282 - 3292
  • [39] Hamiltonian and action formalisms for two-dimensional gyroviscous magnetohydrodynamics
    Morrison, P. J.
    Lingam, M.
    Acevedo, R.
    PHYSICS OF PLASMAS, 2014, 21 (08)
  • [40] On the global regularity of two-dimensional generalized magnetohydrodynamics system
    Yamazaki, Kazuo
    JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2014, 416 (01) : 99 - 111