Numerical methods for a class of nonlinear integro-differential equations

被引:5
|
作者
Glowinski, R. [1 ]
Shiau, L. [2 ]
Sheppard, M. [2 ]
机构
[1] Univ Houston, Dept Math, Houston, TX 77204 USA
[2] Univ Houston, Dept Math, Houston, TX 77058 USA
基金
美国国家科学基金会;
关键词
Integro-differential equations; Finite differences; Symmetrized operator-splitting schemes; ELEMENT METHOD; SIMULATION;
D O I
10.1007/s10092-012-0056-2
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In a previous article (Glowinski, J. Math. Anal. Appl. 41, 67-96, 1973) the first author discussed several methods for the numerical solution of nonlinear equations of the integro-differential type with periodic boundary conditions. In this article we discuss an alternative methodology largely based on the Strang's symmetrized operator-splitting scheme. Several numerical experiments suggest that the new method is robust and accurate. It is also easier to implement than the various methods discussed by Glowinski in J. Math. Anal. Appl. 41, 67-96 (1973).
引用
收藏
页码:17 / 33
页数:17
相关论文
共 50 条
  • [1] Numerical methods for a class of nonlinear integro-differential equations
    R. Glowinski
    L. Shiau
    M. Sheppard
    Calcolo, 2013, 50 : 17 - 33
  • [2] NUMERICAL METHODS FOR NONLINEAR VOLTERRA INTEGRO-DIFFERENTIAL EQUATIONS
    FELDSTEI.A
    SOPKA, JR
    SIAM REVIEW, 1969, 11 (01) : 111 - &
  • [3] CLASS OF NONLINEAR INTEGRO-DIFFERENTIAL EQUATIONS
    LEUNG, KV
    MANGERON, D
    OGUZTORE.MN
    STEIN, RB
    ATTI DELLA ACCADEMIA NAZIONALE DEI LINCEI RENDICONTI-CLASSE DI SCIENZE FISICHE-MATEMATICHE & NATURALI, 1973, 54 (05): : 699 - 705
  • [4] On a Class of Nonlinear Integro-Differential Equations
    Khachatryan K.A.
    Petrosyan H.S.
    Siberian Advances in Mathematics, 2022, 32 (4) : 250 - 268
  • [5] NUMERICAL-METHODS FOR NONLINEAR VOLTERRA INTEGRO-DIFFERENTIAL EQUATIONS
    FELDSTEIN, A
    SOPKA, JR
    SIAM JOURNAL ON NUMERICAL ANALYSIS, 1974, 11 (04) : 826 - 846
  • [6] Dissipativity of θ-methods for a class of nonlinear neutral delay integro-differential equations
    Wang, L.
    Ding, X.
    INTERNATIONAL JOURNAL OF COMPUTER MATHEMATICS, 2012, 89 (15) : 2029 - 2046
  • [7] CLASS OF NONLINEAR INTEGRO-DIFFERENTIAL EQUATIONS .3.
    LEUNG, KV
    MANGERON, D
    OGUZTORE.MN
    STEIN, RB
    BULLETIN DE LA CLASSE DES SCIENCES ACADEMIE ROYALE DE BELGIQUE, 1973, 59 (06): : 492 - 499
  • [8] CLASS OF NONLINEAR INTEGRO-DIFFERENTIAL EQUATIONS .1.
    LEUNG, KV
    MANGERON, D
    OGUZTORE.MN
    STEIN, RB
    ATTI DELLA ACCADEMIA NAZIONALE DEI LINCEI RENDICONTI-CLASSE DI SCIENZE FISICHE-MATEMATICHE & NATURALI, 1973, 54 (04): : 522 - 528
  • [9] Projection methods for approximate solution of a class of nonlinear Fredholm integro-differential equations
    Mandal, Moumita
    Kayal, Arnab
    Nelakanti, Gnaneshwar
    APPLIED NUMERICAL MATHEMATICS, 2023, 184 : 49 - 76
  • [10] Projection methods for approximate solution of a class of nonlinear Fredholm integro-differential equations
    Mandal, Moumita
    Kayal, Arnab
    Nelakanti, Gnaneshwar
    APPLIED NUMERICAL MATHEMATICS, 2023, 184 : 49 - 76