Projection methods for approximate solution of a class of nonlinear Fredholm integro-differential equations

被引:0
|
作者
Mandal, Moumita [1 ]
Kayal, Arnab [1 ]
Nelakanti, Gnaneshwar [2 ]
机构
[1] Indian Inst Technol Jodhpur, Dept Math, Jodhpur 342037, India
[2] Indian Inst Technol Kharagpur, Dept Math, Kharagpur 721302, India
关键词
Integro-differential equations; Smooth kernels; Projection method; Kulkarni method; Superconvergence rates;
D O I
暂无
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
The aim of this article is to find the approximate solution of the nonlinear Fredholm integro-differential equations of second kind with smooth kernels with less computational complexity and investigate the asymptotic behavior of convergence of the approximate so-lutions by using global polynomials based projection methods. We develop the theoretical framework for the nonlinear Fredholm integro-differential equations to obtain the super -convergence results by Legendre polynomial based projection methods and their iterated versions. Numerical examples are considered to demonstrate the theoretical results.(c) 2022 IMACS. Published by Elsevier B.V. All rights reserved.
引用
收藏
页码:49 / 76
页数:28
相关论文
共 50 条
  • [1] Projection methods for approximate solution of a class of nonlinear Fredholm integro-differential equations
    Mandal, Moumita
    Kayal, Arnab
    Nelakanti, Gnaneshwar
    APPLIED NUMERICAL MATHEMATICS, 2023, 184 : 49 - 76
  • [2] Novel algorithms to approximate the solution of nonlinear integro-differential equations of Volterra-Fredholm integro type
    HamaRashid, Hawsar
    Srivastava, Hari Mohan
    Hama, Mudhafar
    Mohammed, Pshtiwan Othman
    Almusawa, Musawa Yahya
    Baleanu, Dumitru
    AIMS MATHEMATICS, 2023, 8 (06): : 14572 - 14591
  • [3] A series solution of the nonlinear Volterra and Fredholm integro-differential equations
    Shidfar, A.
    Molabahrami, A.
    Babaei, A.
    Yazdanian, A.
    COMMUNICATIONS IN NONLINEAR SCIENCE AND NUMERICAL SIMULATION, 2010, 15 (02) : 205 - 215
  • [4] Existence of Solution of Nonlinear Fuzzy Fredholm Integro-differential Equations
    Mosleh, M.
    Otadi, M.
    FUZZY INFORMATION AND ENGINEERING, 2016, 8 (01) : 17 - 30
  • [5] An Efficient Method for the Numerical Solution of a Class of Nonlinear Fractional Fredholm Integro-Differential Equations
    Heydari, M. H.
    Dastjerdi, H. Laeli
    Ahmadabadi, M. Nili
    INTERNATIONAL JOURNAL OF NONLINEAR SCIENCES AND NUMERICAL SIMULATION, 2018, 19 (02) : 165 - 173
  • [6] An approximate solution of one class of singular integro-differential equations
    Shavlakadze, Nugzar
    Kharibegashvili, Sergo
    Jokhadze, Otar
    TRANSACTIONS OF A RAZMADZE MATHEMATICAL INSTITUTE, 2016, 170 (03) : 420 - 426
  • [7] AN APPROXIMATE SOLUTION OF ONE CLASS OF SINGULAR INTEGRO-DIFFERENTIAL EQUATIONS
    VELEV, GD
    DUSHKOV, PN
    IZVESTIYA VYSSHIKH UCHEBNYKH ZAVEDENII MATEMATIKA, 1981, (02): : 9 - 13
  • [8] On Approximate Solution of One Class of Singular Integro-Differential Equations
    N. S. Gabbasov
    Computational Mathematics and Mathematical Physics, 2023, 63 : 231 - 240
  • [9] On Approximate Solution of One Class of Singular Integro-Differential Equations
    Gabbasov, N. S.
    COMPUTATIONAL MATHEMATICS AND MATHEMATICAL PHYSICS, 2023, 63 (02) : 231 - 240
  • [10] Numerical solution of nonlinear Volterra-Fredholm integro-differential equations
    Darania, P.
    Ivaz, K.
    COMPUTERS & MATHEMATICS WITH APPLICATIONS, 2008, 56 (09) : 2197 - 2209