Optimal data fusion for pedestrian navigation based on UWB and MEMS

被引:0
|
作者
Renaudin, V. [1 ]
Merminod, B. [1 ]
Kasser, M. [2 ]
机构
[1] Ecole Polytech Fed Lausanne, CH-1015 Lausanne, Switzerland
[2] Ecole Natl Sci Geograph, Champs Sur Marne, France
关键词
D O I
暂无
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
Indoor pedestrian navigation is probably a very challenging research area. In this context, an optimal data fusion filter that hybridises a large set of observations: angles of arrival (AOA), time differences of arrival (TDOA), accelerations, angular velocities and magnetic field measurements is presented. The coupling of UWB and MEMS data relies on an Extended Kalman Filter complemented with specific procedures. Geometry based algorithms and a RANSAC paradigm that mitigates the Non Line Of Sight (NLOS) UWB propagation are detailed. The benefit of the solution is evaluated and compared with the pure inertial positioning system.
引用
收藏
页码:753 / +
页数:3
相关论文
共 50 条
  • [21] Triggered INS/GNSS Data Fusion Algorithms for Enhanced Pedestrian Navigation System
    Basso, Michele
    Galanti, Matteo
    Innocenti, Giacomo
    Miceli, Davide
    IEEE SENSORS JOURNAL, 2020, 20 (13) : 7447 - 7459
  • [22] A Novel Data Fusion Method For Indoor Navigation Using IMU Aided UWB
    Cao, Hailin
    Liu, Junpeng
    Zhu, Chenzhuo
    Jing, Li
    Chen, Tao
    Wang, Tao
    PROCEEDINGS OF 2019 IEEE 2ND INTERNATIONAL CONFERENCE ON ELECTRONIC INFORMATION AND COMMUNICATION TECHNOLOGY (ICEICT 2019), 2019, : 100 - 105
  • [23] Sensor data fusion for optimal robotic navigation using regression based on an IOT system
    Aroulanandam V.V.
    Satyam
    Sherubha P.
    Lalitha K.
    Hymavathi J.
    Thiagarajan R.
    Measurement: Sensors, 2022, 24
  • [24] UWB and IMU System Fusion for Indoor Navigation
    Wang Guosheng
    Qin Shuqi
    Lv Qiang
    Wei Heng
    Lin Huican
    Liang Bing
    2018 37TH CHINESE CONTROL CONFERENCE (CCC), 2018, : 4946 - 4950
  • [25] Performance Enhancement of MEMS-Based INS/UWB Integration for Indoor Navigation Applications
    Fan, Qigao
    Sun, Biwen
    Sun, Yan
    Zhuang, Xiangpeng
    IEEE SENSORS JOURNAL, 2017, 17 (10) : 3116 - 3130
  • [26] A GIS data model for landmark-based pedestrian navigation
    Fang, Zhixiang
    Li, Qingquan
    Zhang, Xing
    Shaw, Shih-Lung
    INTERNATIONAL JOURNAL OF GEOGRAPHICAL INFORMATION SCIENCE, 2012, 26 (05) : 817 - 838
  • [27] Pedestrian Localization with Stride-Wise Error Estimation and Compensation by Fusion of UWB and IMU Data
    Hoelzke, Fabian
    Borstell, Hagen
    Golatowski, Frank
    Haubelt, Christian
    SENSORS, 2023, 23 (10)
  • [28] UWB Ranging and IMU Data Fusion: Overview and Nonlinear Stochastic Filter for Inertial Navigation
    Hashim, Hashim A.
    Eltoukhy, Abdelrahman E. E.
    Vamvoudakis, Kyriakos G.
    IEEE TRANSACTIONS ON INTELLIGENT TRANSPORTATION SYSTEMS, 2024, 25 (01) : 359 - 369
  • [29] Zero Velocity Detection for Pedestrian Inertial Navigation Based on Spatiotemporal Feature Fusion
    Wang, Xinye
    Feng, Kaiqiang
    Li, Jie
    Guo, Xiaoting
    Han, Huiyan
    Cao, Shengjie
    IEEE SENSORS JOURNAL, 2024, 24 (24) : 41932 - 41940
  • [30] Hidden Markov Model-based Pedestrian Navigation System using MEMS Inertial Sensors
    Zhang, Yingjun
    Liu, Wen
    Yang, Xuefeng
    Xing, Shengwei
    MEASUREMENT SCIENCE REVIEW, 2015, 15 (01): : 35 - 43