Heterostructures of Quantum-Cascade Laser for the Spectral Range of 4.6 μm for Obtaining a Continuous-Wave Lasing Mode

被引:8
|
作者
Babichev, A. V. [1 ]
Gladyshev, A. G. [1 ]
Dudelev, V. V. [2 ]
Karachinsky, L. Ya. [1 ,2 ,3 ]
Novikov, I. I. [1 ,2 ,3 ]
Denisov, D. V. [4 ]
Slipchenko, S. O. [2 ]
Lyutetskii, A. V. [2 ]
Pikhtin, N. A. [2 ]
Sokolovskii, G. S. [2 ]
Egorov, A. Yu. [3 ]
机构
[1] Connector Opt LLC, St Petersburg 194292, Russia
[2] Ioffe Inst, St Petersburg 194021, Russia
[3] ITMO Univ, St Petersburg 197101, Russia
[4] St Petersburg Electrotech Univ LETI, St Petersburg 197022, Russia
关键词
superlattices; quantum-cascade laser; epitaxy; indium phosphide; WAVELENGTH; OPERATION; EMISSION;
D O I
10.1134/S1063785020050028
中图分类号
O59 [应用物理学];
学科分类号
摘要
The method of molecular-beam epitaxy was used to fabricate an elastically balanced heterostructure of a quantum-cascade laser for the spectral range of 4.6 mu m based on a heteropair of solid alloys, In0.67Ga0.33As/In0.36Al0.64As, and indium phosphide layers serving as waveguide cladding layers. An X-ray diffraction analysis demonstrated the high uniformity of the composition and thickness of layers in cascades of the heterostructure over the substrate area. Lasers with four cleaved facets show lasing at room temperature at a wavelength close to 4.6 mu m with a comparatively low threshold current density of 1.1 kA/cm(2).
引用
收藏
页码:442 / 445
页数:4
相关论文
共 50 条
  • [41] High-performance, continuous-wave quantum-cascade lasers operating up to 85°C at λ∼8.8 μm
    J. S. Yu
    S. Slivken
    A. Evans
    M. Razeghi
    Applied Physics A, 2008, 93 : 405 - 408
  • [42] Continuous-wave operation quantum cascade lasers at 7.95 μm
    Xu, GY
    Li, AZ
    Zhang, YG
    Li, H
    JOURNAL OF CRYSTAL GROWTH, 2005, 278 (1-4) : 780 - 784
  • [43] Continuous-wave operation of distributed feedback AlAs/GaAs superlattice quantum-cascade lasers
    Schrenk, W
    Finger, N
    Gianordoli, S
    Gornik, E
    Strasser, G
    APPLIED PHYSICS LETTERS, 2000, 77 (21) : 3328 - 3330
  • [44] Ultralow power consumption of a quantum cascade laser operating in continuous-wave mode at room temperature
    Cheng, Fengmin
    Zhang, Jinchuan
    Guan, Yanjiao
    Yang, Pengchang
    Zhuo, Ning
    Zhai, Shenqiang
    Liu, Junqi
    Wang, Lijun
    Liu, Shuman
    Liu, Fengqi
    Wang, Zhanguo
    OPTICS EXPRESS, 2020, 28 (24): : 36497 - 36504
  • [45] High-performance continuous-wave operation of superlattice terahertz quantum-cascade lasers
    Köhler, R
    Tredicucci, A
    Beltram, F
    Beere, HE
    Linfield, EH
    Davies, AG
    Ritchie, DA
    Dhillon, SS
    Sirtori, C
    APPLIED PHYSICS LETTERS, 2003, 82 (10) : 1518 - 1520
  • [46] Room-temperature continuous-wave operation of quantum-cascade lasers at λ∼4 μm -: art. no. 041111
    Yu, JS
    Darvish, SR
    Evans, A
    Nguyen, J
    Slivken, S
    Razeghi, M
    APPLIED PHYSICS LETTERS, 2006, 88 (04) : 1 - 3
  • [47] Erratum to: High-performance, continuous-wave quantum-cascade lasers operating up to 85°C at λ∼8.8 μm
    J. S. Yu
    S. Slivken
    A. Evans
    M. Razeghi
    Applied Physics A, 2010, 100 : 575 - 575
  • [48] High-power continuous-wave operation of quantum-cascade lasers up to 60 °C
    Yu, JS
    Evans, A
    David, J
    Doris, L
    Slivken, S
    Razeghi, M
    IEEE PHOTONICS TECHNOLOGY LETTERS, 2004, 16 (03) : 747 - 749
  • [49] Continuous-wave two-photon terahertz quantum cascade laser
    Khabibullin, R. A.
    Ushakov, D. V.
    Afonenko, A. A.
    Pavlov, A. Yu.
    Galiev, R. R.
    Ponomarev, D. S.
    Vasilyev, A. P.
    Kuzmenkov, A. G.
    Maleev, N. A.
    Zubov, F. I.
    Maksimov, M. V.
    Belov, D. A.
    Ikonnikov, A. V.
    Kuritsyn, D. I.
    Zhukavin, R. Kh.
    Kovalevsky, K. A.
    Anfertev, V. A.
    Vaks, V. L.
    Antonov, A. V.
    Dubinov, A. A.
    Morozov, S. V.
    Gavrilenko, V. I.
    JOURNAL OF APPLIED PHYSICS, 2024, 136 (19)
  • [50] Continuous-wave operation of terahertz quantum-cascade lasers above liquid-nitrogen temperature
    Kumar, S
    Williams, BS
    Kohen, S
    Hu, Q
    Reno, JL
    APPLIED PHYSICS LETTERS, 2004, 84 (14) : 2494 - 2496